Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
		
			
				
	
	
		
			179 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			179 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import argparse
 | |
| import datetime
 | |
| import os
 | |
| import pprint
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| from mujoco_env import make_mujoco_env
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
 | |
| from tianshou.exploration import GaussianNoise
 | |
| from tianshou.policy import DDPGPolicy
 | |
| from tianshou.trainer import OffpolicyTrainer
 | |
| from tianshou.utils import TensorboardLogger, WandbLogger
 | |
| from tianshou.utils.net.common import Net
 | |
| from tianshou.utils.net.continuous import Actor, Critic
 | |
| 
 | |
| 
 | |
| def get_args():
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--task", type=str, default="Ant-v3")
 | |
|     parser.add_argument("--seed", type=int, default=0)
 | |
|     parser.add_argument("--buffer-size", type=int, default=1000000)
 | |
|     parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[256, 256])
 | |
|     parser.add_argument("--actor-lr", type=float, default=1e-3)
 | |
|     parser.add_argument("--critic-lr", type=float, default=1e-3)
 | |
|     parser.add_argument("--gamma", type=float, default=0.99)
 | |
|     parser.add_argument("--tau", type=float, default=0.005)
 | |
|     parser.add_argument("--exploration-noise", type=float, default=0.1)
 | |
|     parser.add_argument("--start-timesteps", type=int, default=25000)
 | |
|     parser.add_argument("--epoch", type=int, default=200)
 | |
|     parser.add_argument("--step-per-epoch", type=int, default=5000)
 | |
|     parser.add_argument("--step-per-collect", type=int, default=1)
 | |
|     parser.add_argument("--update-per-step", type=int, default=1)
 | |
|     parser.add_argument("--n-step", type=int, default=1)
 | |
|     parser.add_argument("--batch-size", type=int, default=256)
 | |
|     parser.add_argument("--training-num", type=int, default=1)
 | |
|     parser.add_argument("--test-num", type=int, default=10)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=0.0)
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default="cuda" if torch.cuda.is_available() else "cpu",
 | |
|     )
 | |
|     parser.add_argument("--resume-path", type=str, default=None)
 | |
|     parser.add_argument("--resume-id", type=str, default=None)
 | |
|     parser.add_argument(
 | |
|         "--logger",
 | |
|         type=str,
 | |
|         default="tensorboard",
 | |
|         choices=["tensorboard", "wandb"],
 | |
|     )
 | |
|     parser.add_argument("--wandb-project", type=str, default="mujoco.benchmark")
 | |
|     parser.add_argument(
 | |
|         "--watch",
 | |
|         default=False,
 | |
|         action="store_true",
 | |
|         help="watch the play of pre-trained policy only",
 | |
|     )
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def test_ddpg(args=get_args()):
 | |
|     env, train_envs, test_envs = make_mujoco_env(
 | |
|         args.task,
 | |
|         args.seed,
 | |
|         args.training_num,
 | |
|         args.test_num,
 | |
|         obs_norm=False,
 | |
|     )
 | |
|     args.state_shape = env.observation_space.shape or env.observation_space.n
 | |
|     args.action_shape = env.action_space.shape or env.action_space.n
 | |
|     args.max_action = env.action_space.high[0]
 | |
|     args.exploration_noise = args.exploration_noise * args.max_action
 | |
|     print("Observations shape:", args.state_shape)
 | |
|     print("Actions shape:", args.action_shape)
 | |
|     print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     # model
 | |
|     net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
 | |
|     actor = Actor(net_a, args.action_shape, max_action=args.max_action, device=args.device).to(
 | |
|         args.device,
 | |
|     )
 | |
|     actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
 | |
|     net_c = Net(
 | |
|         args.state_shape,
 | |
|         args.action_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         concat=True,
 | |
|         device=args.device,
 | |
|     )
 | |
|     critic = Critic(net_c, device=args.device).to(args.device)
 | |
|     critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
 | |
|     policy = DDPGPolicy(
 | |
|         actor=actor,
 | |
|         actor_optim=actor_optim,
 | |
|         critic=critic,
 | |
|         critic_optim=critic_optim,
 | |
|         tau=args.tau,
 | |
|         gamma=args.gamma,
 | |
|         exploration_noise=GaussianNoise(sigma=args.exploration_noise),
 | |
|         estimation_step=args.n_step,
 | |
|         action_space=env.action_space,
 | |
|     )
 | |
| 
 | |
|     # load a previous policy
 | |
|     if args.resume_path:
 | |
|         policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
 | |
|         print("Loaded agent from: ", args.resume_path)
 | |
| 
 | |
|     # collector
 | |
|     if args.training_num > 1:
 | |
|         buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
 | |
|     else:
 | |
|         buffer = ReplayBuffer(args.buffer_size)
 | |
|     train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
 | |
|     test_collector = Collector(policy, test_envs)
 | |
|     train_collector.collect(n_step=args.start_timesteps, random=True)
 | |
| 
 | |
|     # log
 | |
|     now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
 | |
|     args.algo_name = "ddpg"
 | |
|     log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
 | |
|     log_path = os.path.join(args.logdir, log_name)
 | |
| 
 | |
|     # logger
 | |
|     if args.logger == "wandb":
 | |
|         logger = WandbLogger(
 | |
|             save_interval=1,
 | |
|             name=log_name.replace(os.path.sep, "__"),
 | |
|             run_id=args.resume_id,
 | |
|             config=args,
 | |
|             project=args.wandb_project,
 | |
|         )
 | |
|     writer = SummaryWriter(log_path)
 | |
|     writer.add_text("args", str(args))
 | |
|     if args.logger == "tensorboard":
 | |
|         logger = TensorboardLogger(writer)
 | |
|     else:  # wandb
 | |
|         logger.load(writer)
 | |
| 
 | |
|     def save_best_fn(policy):
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | |
| 
 | |
|     if not args.watch:
 | |
|         # trainer
 | |
|         result = OffpolicyTrainer(
 | |
|             policy=policy,
 | |
|             train_collector=train_collector,
 | |
|             test_collector=test_collector,
 | |
|             max_epoch=args.epoch,
 | |
|             step_per_epoch=args.step_per_epoch,
 | |
|             step_per_collect=args.step_per_collect,
 | |
|             episode_per_test=args.test_num,
 | |
|             batch_size=args.batch_size,
 | |
|             save_best_fn=save_best_fn,
 | |
|             logger=logger,
 | |
|             update_per_step=args.update_per_step,
 | |
|             test_in_train=False,
 | |
|         ).run()
 | |
|         pprint.pprint(result)
 | |
| 
 | |
|     # Let's watch its performance!
 | |
|     policy.eval()
 | |
|     test_envs.seed(args.seed)
 | |
|     test_collector.reset()
 | |
|     result = test_collector.collect(n_episode=args.test_num, render=args.render)
 | |
|     print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_ddpg()
 |