Tianshou/test/base/test_buffer.py

1383 lines
44 KiB
Python

import os
import pickle
import tempfile
from test.base.env import MoveToRightEnv, MyGoalEnv
from typing import cast
import h5py
import numpy as np
import numpy.typing as npt
import pytest
import torch
from tianshou.data import (
Batch,
CachedReplayBuffer,
HERReplayBuffer,
HERVectorReplayBuffer,
PrioritizedReplayBuffer,
PrioritizedVectorReplayBuffer,
ReplayBuffer,
SegmentTree,
VectorReplayBuffer,
)
from tianshou.data.utils.converter import to_hdf5
def test_replaybuffer(size: int = 10, bufsize: int = 20) -> None:
env = MoveToRightEnv(size)
buf = ReplayBuffer(bufsize)
buf.update(buf)
assert str(buf) == buf.__class__.__name__ + "()"
obs, _ = env.reset()
action_list = [1] * 5 + [0] * 10 + [1] * 10
for i, act in enumerate(action_list):
obs_next, rew, terminated, truncated, info = env.step(act)
buf.add(
Batch(
obs=obs,
act=[act],
rew=rew,
terminated=terminated,
truncated=truncated,
obs_next=obs_next,
info=info,
),
)
obs = obs_next
assert len(buf) == min(bufsize, i + 1)
assert buf.act.dtype == int
assert buf.act.shape == (bufsize, 1)
data, indices = buf.sample(bufsize * 2)
assert isinstance(data, Batch)
assert (indices < len(buf)).all()
assert (data.obs < size).all()
assert (data.done >= 0).all()
assert (data.done <= 1).all()
assert (data.terminated >= 0).all()
assert (data.terminated <= 1).all()
assert (data.truncated >= 0).all()
assert (data.truncated <= 1).all()
b = ReplayBuffer(size=10)
# neg bsz should return empty index
assert b.sample_indices(-1).tolist() == []
ptr, ep_rew, ep_len, ep_idx = b.add(
Batch(
obs=1,
act=1,
rew=1,
terminated=1,
truncated=0,
obs_next="str",
info={"a": 3, "b": {"c": 5.0}},
),
)
assert b.obs[0] == 1
assert b.done[0]
assert b.terminated[0]
assert not b.truncated[0]
assert b.obs_next[0] == "str"
assert np.all(b.obs[1:] == 0)
assert np.all(b.obs_next[1:] == np.array(None))
assert b.info.a[0] == 3
assert b.info.a.dtype == int
assert np.all(b.info.a[1:] == 0)
assert b.info.b.c[0] == 5.0
assert b.info.b.c.dtype == float
assert np.all(b.info.b.c[1:] == 0.0)
assert ptr.shape == (1,)
assert ptr[0] == 0
assert ep_rew.shape == (1,)
assert ep_rew[0] == 1
assert ep_len.shape == (1,)
assert ep_len[0] == 1
assert ep_idx.shape == (1,)
assert ep_idx[0] == 0
# test extra keys pop up, the buffer should handle it dynamically
batch = Batch(
obs=2,
act=2,
rew=2,
terminated=0,
truncated=0,
obs_next="str2",
info={"a": 4, "d": {"e": -np.inf}},
)
b.add(batch)
info_keys = ["a", "b", "d"]
assert set(b.info.keys()) == set(info_keys)
assert b.info.a[1] == 4
assert b.info.b.c[1] == 0
assert b.info.d.e[1] == -np.inf
# test batch-style adding method, where len(batch) == 1
batch.done = [1]
batch.terminated = [0]
batch.truncated = [1]
batch.info.e = np.zeros([1, 4])
batch = Batch.stack([batch])
ptr, ep_rew, ep_len, ep_idx = b.add(batch, buffer_ids=[0])
assert ptr.shape == (1,)
assert ptr[0] == 2
assert ep_rew.shape == (1,)
assert ep_rew[0] == 4
assert ep_len.shape == (1,)
assert ep_len[0] == 2
assert ep_idx.shape == (1,)
assert ep_idx[0] == 1
assert set(b.info.keys()) == {*info_keys, "e"}
assert b.info.e.shape == (b.maxsize, 1, 4)
with pytest.raises(IndexError):
b[22]
# test prev / next
assert np.all(b.prev(np.array([0, 1, 2])) == [0, 1, 1])
assert np.all(b.next(np.array([0, 1, 2])) == [0, 2, 2])
batch.done = [0]
b.add(batch, buffer_ids=[0])
assert np.all(b.prev(np.array([0, 1, 2, 3])) == [0, 1, 1, 3])
assert np.all(b.next(np.array([0, 1, 2, 3])) == [0, 2, 2, 3])
def test_ignore_obs_next(size: int = 10) -> None:
# Issue 82
buf = ReplayBuffer(size, ignore_obs_next=True)
for i in range(size):
buf.add(
Batch(
obs={
"mask1": np.array([i, 1, 1, 0, 0]),
"mask2": np.array([i + 4, 0, 1, 0, 0]),
"mask": i,
},
act={"act_id": i, "position_id": i + 3},
rew=i,
terminated=i % 3 == 0,
truncated=False,
info={"if": i},
),
)
indices = np.arange(len(buf))
orig = np.arange(len(buf))
data = buf[indices]
data2 = buf[indices]
assert isinstance(data, Batch)
assert isinstance(data2, Batch)
assert np.allclose(indices, orig)
assert hasattr(data.obs_next, "mask") and hasattr(
data2.obs_next,
"mask",
), "Both `data.obs_next` and `data2.obs_next` must have attribute `mask`."
assert np.allclose(data.obs_next.mask, data2.obs_next.mask)
assert np.allclose(data.obs_next.mask, [0, 2, 3, 3, 5, 6, 6, 8, 9, 9])
buf.stack_num = 4
data = buf[indices]
data2 = buf[indices]
assert hasattr(data.obs_next, "mask") and hasattr(
data2.obs_next,
"mask",
), "Both `data.obs_next` and `data2.obs_next` must have attribute `mask`."
assert np.allclose(data.obs_next.mask, data2.obs_next.mask)
assert np.allclose(
data.obs_next.mask,
np.array(
[
[0, 0, 0, 0],
[1, 1, 1, 2],
[1, 1, 2, 3],
[1, 1, 2, 3],
[4, 4, 4, 5],
[4, 4, 5, 6],
[4, 4, 5, 6],
[7, 7, 7, 8],
[7, 7, 8, 9],
[7, 7, 8, 9],
],
),
)
assert np.allclose(data["info"]["if"], data2["info"]["if"])
assert np.allclose(
data["info"]["if"],
np.array(
[
[0, 0, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 2],
[1, 1, 2, 3],
[4, 4, 4, 4],
[4, 4, 4, 5],
[4, 4, 5, 6],
[7, 7, 7, 7],
[7, 7, 7, 8],
[7, 7, 8, 9],
],
),
)
assert data.obs_next
def test_stack(size: int = 5, bufsize: int = 9, stack_num: int = 4, cached_num: int = 3) -> None:
env = MoveToRightEnv(size)
buf = ReplayBuffer(bufsize, stack_num=stack_num)
buf2 = ReplayBuffer(bufsize, stack_num=stack_num, sample_avail=True)
buf3 = ReplayBuffer(bufsize, stack_num=stack_num, save_only_last_obs=True)
obs, info = env.reset(options={"state": 1})
for _ in range(16):
obs_next, rew, terminated, truncated, info = env.step(1)
done = terminated or truncated
buf.add(
Batch(
obs=obs,
act=1,
rew=rew,
terminated=terminated,
truncated=truncated,
info=info,
),
)
buf2.add(
Batch(
obs=obs,
act=1,
rew=rew,
terminated=terminated,
truncated=truncated,
info=info,
),
)
buf3.add(
Batch(
obs=[obs, obs, obs],
act=1,
rew=rew,
terminated=terminated,
truncated=truncated,
obs_next=[obs, obs],
info=info,
),
)
obs = obs_next
if done:
obs, info = env.reset(options={"state": 1})
indices = np.arange(len(buf))
assert np.allclose(
buf.get(indices, "obs")[..., 0],
[
[1, 1, 1, 2],
[1, 1, 2, 3],
[1, 2, 3, 4],
[1, 1, 1, 1],
[1, 1, 1, 2],
[1, 1, 2, 3],
[1, 2, 3, 4],
[4, 4, 4, 4],
[1, 1, 1, 1],
],
)
assert np.allclose(buf.get(indices, "obs"), buf3.get(indices, "obs"))
assert np.allclose(buf.get(indices, "obs"), buf3.get(indices, "obs_next"))
_, indices = buf2.sample(0)
assert indices.tolist() == [2, 6]
_, indices = buf2.sample(1)
assert indices[0] in [2, 6]
batch, indices = buf2.sample(-1) # neg bsz -> no data
assert indices.tolist() == []
assert len(batch) == 0
with pytest.raises(IndexError):
buf[bufsize * 2]
def test_priortized_replaybuffer(size: int = 32, bufsize: int = 15) -> None:
env = MoveToRightEnv(size)
buf = PrioritizedReplayBuffer(bufsize, 0.5, 0.5)
buf2 = PrioritizedVectorReplayBuffer(bufsize, buffer_num=3, alpha=0.5, beta=0.5)
obs, info = env.reset()
action_list = [1] * 5 + [0] * 10 + [1] * 10
for i, act in enumerate(action_list):
obs_next, rew, terminated, truncated, info = env.step(act)
batch = Batch(
obs=obs,
act=act,
rew=rew,
terminated=terminated,
truncated=truncated,
obs_next=obs_next,
info=info,
policy=np.random.randn() - 0.5,
)
batch_stack = Batch.stack([batch, batch, batch])
buf.add(Batch.stack([batch]), buffer_ids=[0])
buf2.add(batch_stack, buffer_ids=[0, 1, 2])
obs = obs_next
data, indices = buf.sample(len(buf) // 2)
if len(buf) // 2 == 0:
assert len(data) == len(buf)
else:
assert len(data) == len(buf) // 2
assert len(buf) == min(bufsize, i + 1)
assert len(buf2) == min(bufsize, 3 * (i + 1))
# check single buffer's data
assert buf.info.key.shape == (buf.maxsize,)
assert buf.rew.dtype == float
assert buf.done.dtype == bool
assert buf.terminated.dtype == bool
assert buf.truncated.dtype == bool
data, indices = buf.sample(len(buf) // 2)
buf.update_weight(indices, -data.weight / 2)
assert np.allclose(buf.weight[indices], np.abs(-data.weight / 2) ** buf._alpha)
# check multi buffer's data
assert np.allclose(buf2[np.arange(buf2.maxsize)].weight, 1)
batch_sample, indices = buf2.sample(10)
buf2.update_weight(indices, batch_sample.weight * 0)
weight = buf2[np.arange(buf2.maxsize)].weight
assert isinstance(weight, np.ndarray)
mask = np.isin(np.arange(buf2.maxsize), indices)
selected_weight = weight[mask]
unselected_weight = weight[~mask]
assert np.all(selected_weight == selected_weight[0])
assert np.all(unselected_weight == unselected_weight[0])
assert unselected_weight[0] < selected_weight[0]
assert selected_weight[0] <= 1
def test_herreplaybuffer(size: int = 10, bufsize: int = 100, sample_sz: int = 4) -> None:
env_size = size
env = MyGoalEnv(env_size, array_state=True)
def compute_reward_fn(ag: np.ndarray, g: np.ndarray) -> np.ndarray:
return env.compute_reward_fn(ag, g, {})
buf = HERReplayBuffer(bufsize, compute_reward_fn=compute_reward_fn, horizon=30, future_k=8)
buf2 = HERVectorReplayBuffer(
bufsize,
buffer_num=3,
compute_reward_fn=compute_reward_fn,
horizon=30,
future_k=8,
)
# Apply her on every episodes sampled (Hacky but necessary for deterministic test)
buf.future_p = 1
for buf2_buf in buf2.buffers:
buf2_buf.future_p = 1
obs, _ = env.reset()
action_list = [1] * 5 + [0] * 10 + [1] * 10
for i, act in enumerate(action_list):
obs_next, rew, terminated, truncated, info = env.step(act)
batch = Batch(
obs=obs,
act=[act],
rew=rew,
terminated=terminated,
truncated=truncated,
obs_next=obs_next,
info=info,
)
buf.add(batch)
buf2.add(Batch.stack([batch, batch, batch]), buffer_ids=[0, 1, 2])
obs = obs_next
assert len(buf) == min(bufsize, i + 1)
assert len(buf2) == min(bufsize, 3 * (i + 1))
batch_sample, indices = buf.sample(sample_sz)
# Check that goals are the same for the episode (only 1 ep in buffer)
tmp_indices = indices.copy()
for _ in range(2 * env_size):
obs_in_buf = cast(Batch, buf[tmp_indices].obs)
obs_next_buf = cast(Batch, buf[tmp_indices].obs_next)
rew_in_buf = buf[tmp_indices].rew
g = obs_in_buf.desired_goal.reshape(sample_sz, -1)[:, 0]
ag_next = obs_next_buf.achieved_goal.reshape(sample_sz, -1)[:, 0]
g_next = obs_next_buf.desired_goal.reshape(sample_sz, -1)[:, 0]
assert np.all(g == g[0])
assert np.all(g_next == g_next[0])
assert np.all(rew_in_buf == (ag_next == g).astype(np.float32))
tmp_indices = buf.next(tmp_indices)
# Check that goals are correctly restored
buf._restore_cache()
tmp_indices = indices.copy()
for _ in range(2 * env_size):
obs_in_buf = cast(Batch, buf[tmp_indices].obs)
obs_next_buf = cast(Batch, buf[tmp_indices].obs_next)
g = obs_in_buf.desired_goal.reshape(sample_sz, -1)[:, 0]
g_next = obs_next_buf.desired_goal.reshape(sample_sz, -1)[:, 0]
assert np.all(g == env_size)
assert np.all(g_next == g_next[0])
assert np.all(g == g[0])
tmp_indices = buf.next(tmp_indices)
# Test vector buffer
batch_sample, indices = buf2.sample(sample_sz)
# Check that goals are the same for the episode (only 1 ep in buffer)
tmp_indices = indices.copy()
for _ in range(2 * env_size):
obs_in_buf = cast(Batch, buf2[tmp_indices].obs)
obs_next_buf = cast(Batch, buf2[tmp_indices].obs_next)
rew_buf = buf2[tmp_indices].rew
g = obs_in_buf.desired_goal.reshape(sample_sz, -1)[:, 0]
ag_next = obs_next_buf.achieved_goal.reshape(sample_sz, -1)[:, 0]
g_next = obs_next_buf.desired_goal.reshape(sample_sz, -1)[:, 0]
assert np.all(g == g_next)
assert np.all(rew_buf == (ag_next == g).astype(np.float32))
tmp_indices = buf2.next(tmp_indices)
# Check that goals are correctly restored
buf2._restore_cache()
tmp_indices = indices.copy()
for _ in range(2 * env_size):
obs_in_buf = cast(Batch, buf2[tmp_indices].obs)
obs_next_buf = cast(Batch, buf2[tmp_indices].obs_next)
g = obs_in_buf.desired_goal.reshape(sample_sz, -1)[:, 0]
g_next = obs_next_buf.desired_goal.reshape(sample_sz, -1)[:, 0]
assert np.all(g == env_size)
assert np.all(g_next == g_next[0])
assert np.all(g == g[0])
tmp_indices = buf2.next(tmp_indices)
# Test handling cycled indices
env_size = size
bufsize = 15
env = MyGoalEnv(env_size, array_state=False)
buf = HERReplayBuffer(bufsize, compute_reward_fn=compute_reward_fn, horizon=30, future_k=8)
buf._index = 5 # shifted start index
buf.future_p = 1
for ep_len in [5, 10]:
obs, _ = env.reset()
for i in range(ep_len):
act = 1
obs_next, rew, terminated, truncated, info = env.step(act)
batch = Batch(
obs=obs,
act=[act],
rew=rew,
terminated=(i == ep_len - 1),
truncated=(i == ep_len - 1),
obs_next=obs_next,
info=info,
)
buf.add(batch)
obs = obs_next
batch_sample, indices = buf.sample(0)
assert np.all(buf.obs.desired_goal[:5] == buf.obs.desired_goal[0])
assert np.all(buf.obs.desired_goal[5:10] == buf.obs.desired_goal[5])
assert np.all(buf.obs.desired_goal[10:] == buf.obs.desired_goal[0]) # (same ep)
assert np.all(buf.obs.desired_goal[0] != buf.obs.desired_goal[5]) # (diff ep)
# Another test case for cycled indices
env_size = 99
bufsize = 15
env = MyGoalEnv(env_size, array_state=False)
buf = HERReplayBuffer(bufsize, compute_reward_fn=compute_reward_fn, horizon=30, future_k=8)
buf.future_p = 1
for x, ep_len in enumerate([10, 20]):
obs, _ = env.reset()
for i in range(ep_len):
act = 1
obs_next, rew, terminated, truncated, info = env.step(act)
batch = Batch(
obs=obs,
act=[act],
rew=rew,
terminated=(i == ep_len - 1),
truncated=(i == ep_len - 1),
obs_next=obs_next,
info=info,
)
if x == 1 and obs["observation"] < 10:
obs = obs_next
continue
buf.add(batch)
obs = obs_next
buf._restore_cache()
sample_indices = np.array([10]) # Suppose the sampled indices is [10]
buf.rewrite_transitions(sample_indices)
assert int(buf.obs.desired_goal[10][0]) in [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
def test_update() -> None:
buf1 = ReplayBuffer(4, stack_num=2)
buf2 = ReplayBuffer(4, stack_num=2)
for i in range(5):
buf1.add(
Batch(
obs=np.array([i]),
act=float(i),
rew=i * i,
terminated=i % 2 == 0,
truncated=False,
info={"incident": "found"},
),
)
assert len(buf1) > len(buf2)
buf2.update(buf1)
assert len(buf1) == len(buf2)
assert (buf2.obs[0] == buf1.obs[1]).all()
assert (buf2.obs[-1] == buf1.obs[0]).all()
b = CachedReplayBuffer(ReplayBuffer(10), 4, 5)
with pytest.raises(NotImplementedError):
b.update(b)
def test_segtree() -> None:
realop = np.sum
# small test
actual_len = 8
tree = SegmentTree(actual_len) # 1-15. 8-15 are leaf nodes
assert len(tree) == actual_len
assert np.all([tree[i] == 0.0 for i in range(actual_len)])
with pytest.raises(IndexError):
tree[actual_len]
naive = np.zeros(actual_len)
for _ in range(1000):
# random choose a place to perform single update
index: int | np.ndarray = np.random.randint(actual_len)
value: float | np.ndarray = np.random.rand()
naive[index] = value
tree[index] = value
for i in range(actual_len):
for j in range(i + 1, actual_len):
ref = realop(naive[i:j])
out = tree.reduce(i, j)
assert np.allclose(ref, out), (ref, out)
assert np.allclose(tree.reduce(start=1), realop(naive[1:]))
assert np.allclose(tree.reduce(end=-1), realop(naive[:-1]))
# batch setitem
for _ in range(1000):
index = np.random.choice(actual_len, size=4)
value = np.random.rand(4)
naive[index] = value
tree[index] = value
assert np.allclose(realop(naive), tree.reduce())
for _ in range(10):
left = np.random.randint(actual_len)
right = np.random.randint(left + 1, actual_len + 1)
assert np.allclose(realop(naive[left:right]), tree.reduce(left, right))
# large test
actual_len = 16384
tree = SegmentTree(actual_len)
naive = np.zeros([actual_len])
for _ in range(1000):
index = np.random.choice(actual_len, size=64)
value = np.random.rand(64)
naive[index] = value
tree[index] = value
assert np.allclose(realop(naive), tree.reduce())
for _ in range(10):
left = np.random.randint(actual_len)
right = np.random.randint(left + 1, actual_len + 1)
assert np.allclose(realop(naive[left:right]), tree.reduce(left, right))
# test prefix-sum-idx
actual_len = 8
tree = SegmentTree(actual_len)
naive = np.random.rand(actual_len)
tree[np.arange(actual_len)] = naive
for _ in range(1000):
scalar = np.random.rand() * naive.sum()
index = tree.get_prefix_sum_idx(scalar)
assert naive[:index].sum() <= scalar <= naive[: index + 1].sum()
# corner case here
naive = np.ones(actual_len, int)
tree[np.arange(actual_len)] = naive
for scalar in range(actual_len):
index = tree.get_prefix_sum_idx(scalar * 1.0)
assert naive[:index].sum() <= scalar <= naive[: index + 1].sum()
tree = SegmentTree(10)
tree[np.arange(3)] = np.array([0.1, 0, 0.1])
assert np.allclose(
tree.get_prefix_sum_idx(np.array([0, 0.1, 0.1 + 1e-6, 0.2 - 1e-6])),
[0, 0, 2, 2],
)
with pytest.raises(AssertionError):
tree.get_prefix_sum_idx(0.2)
# test large prefix-sum-idx
actual_len = 16384
tree = SegmentTree(actual_len)
naive = np.random.rand(actual_len)
tree[np.arange(actual_len)] = naive
for _ in range(1000):
scalar = np.random.rand() * naive.sum()
index = tree.get_prefix_sum_idx(scalar)
assert naive[:index].sum() <= scalar <= naive[: index + 1].sum()
def test_pickle() -> None:
size = 100
vbuf = ReplayBuffer(size, stack_num=2)
pbuf = PrioritizedReplayBuffer(size, 0.6, 0.4)
rew = np.array([1, 1])
for i in range(4):
vbuf.add(
Batch(
obs=Batch(index=np.array([i])),
act=0,
rew=rew,
terminated=0,
truncated=0,
),
)
for i in range(5):
pbuf.add(
Batch(
obs=Batch(index=np.array([i])),
act=2,
rew=rew,
terminated=0,
truncated=0,
info=np.random.rand(),
),
)
# save & load
_vbuf = pickle.loads(pickle.dumps(vbuf))
_pbuf = pickle.loads(pickle.dumps(pbuf))
assert len(_vbuf) == len(vbuf)
assert np.allclose(_vbuf.act, vbuf.act)
assert len(_pbuf) == len(pbuf)
assert np.allclose(_pbuf.act, pbuf.act)
# make sure the meta var is identical
assert _vbuf.stack_num == vbuf.stack_num
assert np.allclose(_pbuf.weight[np.arange(len(_pbuf))], pbuf.weight[np.arange(len(pbuf))])
def test_hdf5() -> None:
size = 100
buffers = {
"array": ReplayBuffer(size, stack_num=2),
"prioritized": PrioritizedReplayBuffer(size, 0.6, 0.4),
}
buffer_types = {k: b.__class__ for k, b in buffers.items()}
device = "cuda" if torch.cuda.is_available() else "cpu"
info_t = torch.tensor([1.0]).to(device)
for i in range(4):
kwargs = {
"obs": Batch(index=np.array([i])),
"act": i,
"rew": np.array([1, 2]),
"terminated": i % 3 == 2,
"truncated": False,
"done": i % 3 == 2,
"info": {"number": {"n": i, "t": info_t}, "extra": None},
}
buffers["array"].add(Batch(kwargs))
buffers["prioritized"].add(Batch(kwargs))
# save
paths = {}
for k, buf in buffers.items():
f, path = tempfile.mkstemp(suffix=".hdf5")
os.close(f)
buf.save_hdf5(path)
paths[k] = path
# load replay buffer
_buffers = {k: buffer_types[k].load_hdf5(paths[k]) for k in paths}
# compare
for k in buffers:
assert len(_buffers[k]) == len(buffers[k])
assert np.allclose(_buffers[k].act, buffers[k].act)
assert _buffers[k].stack_num == buffers[k].stack_num
assert _buffers[k].maxsize == buffers[k].maxsize
assert np.all(_buffers[k]._indices == buffers[k]._indices)
for k in ["array", "prioritized"]:
assert _buffers[k]._index == buffers[k]._index
assert isinstance(buffers[k].get(0, "info"), Batch)
assert isinstance(_buffers[k].get(0, "info"), Batch)
for k in ["array"]:
assert np.all(buffers[k][:]["info"].number.n == _buffers[k][:]["info"].number.n)
assert np.all(buffers[k][:]["info"]["extra"] == _buffers[k][:]["info"]["extra"])
# raise exception when value cannot be pickled
data = {"not_supported": lambda x: x * x}
grp = h5py.Group
with pytest.raises(NotImplementedError):
to_hdf5(data, grp) # type: ignore
# ndarray with data type not supported by HDF5 that cannot be pickled
data = {"not_supported": np.array(lambda x: x * x)}
grp = h5py.Group
with pytest.raises(RuntimeError):
to_hdf5(data, grp) # type: ignore
def test_replaybuffermanager() -> None:
buf = VectorReplayBuffer(20, 4)
batch = Batch(
obs=[1, 2, 3],
act=[1, 2, 3],
rew=[1, 2, 3],
terminated=[0, 0, 1],
truncated=[0, 0, 0],
)
ptr, ep_rew, ep_len, ep_idx = buf.add(batch, buffer_ids=[0, 1, 2])
assert np.all(ep_len == [0, 0, 1])
assert np.all(ep_rew == [0, 0, 3])
assert np.all(ptr == [0, 5, 10])
assert np.all(ep_idx == [0, 5, 10])
with pytest.raises(NotImplementedError):
# ReplayBufferManager cannot be updated
buf.update(buf)
# sample index / prev / next / unfinished_index
indices = buf.sample_indices(11000)
assert np.bincount(indices)[[0, 5, 10]].min() >= 3000 # uniform sample
batch, indices = buf.sample(0)
assert np.allclose(indices, [0, 5, 10])
indices_prev = buf.prev(indices)
assert np.allclose(indices_prev, indices), indices_prev
indices_next = buf.next(indices)
assert np.allclose(indices_next, indices), indices_next
assert np.allclose(buf.unfinished_index(), [0, 5])
buf.add(Batch(obs=[4], act=[4], rew=[4], terminated=[1], truncated=[0]), buffer_ids=[3])
assert np.allclose(buf.unfinished_index(), [0, 5])
batch, indices = buf.sample(10)
batch, indices = buf.sample(0)
assert np.allclose(indices, [0, 5, 10, 15])
indices_prev = buf.prev(indices)
assert np.allclose(indices_prev, indices), indices_prev
indices_next = buf.next(indices)
assert np.allclose(indices_next, indices), indices_next
data = np.array([0, 0, 0, 0])
buf.add(
Batch(obs=data, act=data, rew=data, terminated=data, truncated=data),
buffer_ids=[0, 1, 2, 3],
)
buf.add(
Batch(obs=data, act=data, rew=data, terminated=1 - data, truncated=data),
buffer_ids=[0, 1, 2, 3],
)
assert len(buf) == 12
buf.add(
Batch(obs=data, act=data, rew=data, terminated=data, truncated=data),
buffer_ids=[0, 1, 2, 3],
)
buf.add(
Batch(obs=data, act=data, rew=data, terminated=[0, 1, 0, 1], truncated=data),
buffer_ids=[0, 1, 2, 3],
)
assert len(buf) == 20
indices = buf.sample_indices(120000)
assert np.bincount(indices).min() >= 5000
batch, indices = buf.sample(10)
indices = buf.sample_indices(0)
assert np.allclose(indices, np.arange(len(buf)))
# check the actual data stored in buf._meta
assert np.allclose(
buf.done,
[
0,
0,
1,
0,
0,
0,
0,
1,
0,
1,
1,
0,
1,
0,
0,
1,
0,
1,
0,
1,
],
)
assert np.allclose(
buf.prev(indices),
[
0,
0,
1,
3,
3,
5,
5,
6,
8,
8,
10,
11,
11,
13,
13,
15,
16,
16,
18,
18,
],
)
assert np.allclose(
buf.next(indices),
[
1,
2,
2,
4,
4,
6,
7,
7,
9,
9,
10,
12,
12,
14,
14,
15,
17,
17,
19,
19,
],
)
assert np.allclose(buf.unfinished_index(), [4, 14])
ptr, ep_rew, ep_len, ep_idx = buf.add(
Batch(obs=[1], act=[1], rew=[1], terminated=[1], truncated=[0]),
buffer_ids=[2],
)
assert np.all(ep_len == [3])
assert np.all(ep_rew == [1])
assert np.all(ptr == [10])
assert np.all(ep_idx == [13])
assert np.allclose(buf.unfinished_index(), [4])
indices = np.array(sorted(buf.sample_indices(0)))
assert np.allclose(indices, np.arange(len(buf)))
assert np.allclose(
buf.prev(indices),
[
0,
0,
1,
3,
3,
5,
5,
6,
8,
8,
14,
11,
11,
13,
13,
15,
16,
16,
18,
18,
],
)
assert np.allclose(
buf.next(indices),
[
1,
2,
2,
4,
4,
6,
7,
7,
9,
9,
10,
12,
12,
14,
10,
15,
17,
17,
19,
19,
],
)
# corner case: list, int and -1
assert buf.prev(-1) == buf.prev(np.array([buf.maxsize - 1]))[0]
assert buf.next(-1) == buf.next(np.array([buf.maxsize - 1]))[0]
batch = buf._meta
batch.info = np.ones(buf.maxsize)
buf.set_batch(batch)
assert np.allclose(buf.buffers[-1].info, [1] * 5)
assert buf.sample_indices(-1).tolist() == []
assert np.array([ReplayBuffer(0, ignore_obs_next=True)]).dtype == object
def test_cachedbuffer() -> None:
buf = CachedReplayBuffer(ReplayBuffer(10), 4, 5)
assert buf.sample_indices(0).tolist() == []
# check the normal function/usage/storage in CachedReplayBuffer
ptr, ep_rew, ep_len, ep_idx = buf.add(
Batch(obs=[1], act=[1], rew=[1], terminated=[0], truncated=[0]),
buffer_ids=[1],
)
obs = np.zeros(buf.maxsize)
obs[15] = 1
indices = buf.sample_indices(0)
assert np.allclose(indices, [15])
assert np.allclose(buf.prev(indices), [15])
assert np.allclose(buf.next(indices), [15])
assert np.allclose(buf.obs, obs)
assert np.all(ep_len == [0])
assert np.all(ep_rew == [0.0])
assert np.all(ptr == [15])
assert np.all(ep_idx == [15])
ptr, ep_rew, ep_len, ep_idx = buf.add(
Batch(obs=[2], act=[2], rew=[2], terminated=[1], truncated=[0]),
buffer_ids=[3],
)
obs[[0, 25]] = 2
indices = buf.sample_indices(0)
assert np.allclose(indices, [0, 15])
assert np.allclose(buf.prev(indices), [0, 15])
assert np.allclose(buf.next(indices), [0, 15])
assert np.allclose(buf.obs, obs)
assert np.all(ep_len == [1])
assert np.all(ep_rew == [2.0])
assert np.all(ptr == [0])
assert np.all(ep_idx == [0])
assert np.allclose(buf.unfinished_index(), [15])
assert np.allclose(buf.sample_indices(0), [0, 15])
ptr, ep_rew, ep_len, ep_idx = buf.add(
Batch(obs=[3, 4], act=[3, 4], rew=[3, 4], terminated=[0, 1], truncated=[0, 0]),
buffer_ids=[3, 1], # TODO
)
assert np.all(ep_len == [0, 2])
assert np.all(ep_rew == [0, 5.0])
assert np.all(ptr == [25, 2])
assert np.all(ep_idx == [25, 1])
obs[[0, 1, 2, 15, 16, 25]] = [2, 1, 4, 1, 4, 3]
assert np.allclose(buf.obs, obs)
assert np.allclose(buf.unfinished_index(), [25])
indices = buf.sample_indices(0)
assert np.allclose(indices, [0, 1, 2, 25])
assert np.allclose(buf.done[indices], [1, 0, 1, 0])
assert np.allclose(buf.prev(indices), [0, 1, 1, 25])
assert np.allclose(buf.next(indices), [0, 2, 2, 25])
indices = buf.sample_indices(10000)
assert np.bincount(indices)[[0, 1, 2, 25]].min() > 2000 # uniform sample
# cached buffer with main_buffer size == 0 (no update)
# used in test_collector
buf = CachedReplayBuffer(ReplayBuffer(0, sample_avail=True), 4, 5)
data = np.zeros(4)
rew = np.ones([4, 4])
buf.add(Batch(obs=data, act=data, rew=rew, terminated=[0, 0, 1, 1], truncated=[0, 0, 0, 0]))
buf.add(Batch(obs=data, act=data, rew=rew, terminated=[0, 0, 0, 0], truncated=[0, 0, 0, 0]))
buf.add(Batch(obs=data, act=data, rew=rew, terminated=[1, 1, 1, 1], truncated=[0, 0, 0, 0]))
buf.add(Batch(obs=data, act=data, rew=rew, terminated=[0, 0, 0, 0], truncated=[0, 0, 0, 0]))
ptr, ep_rew, ep_len, ep_idx = buf.add(
Batch(obs=data, act=data, rew=rew, terminated=[0, 1, 0, 1], truncated=[0, 0, 0, 0]),
)
assert np.all(ptr == [1, -1, 11, -1])
assert np.all(ep_idx == [0, -1, 10, -1])
assert np.all(ep_len == [0, 2, 0, 2])
assert np.all(ep_rew == [data, data + 2, data, data + 2])
assert np.allclose(
buf.done,
[
0,
0,
1,
0,
0,
0,
1,
1,
0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
0,
0,
],
)
indices = buf.sample_indices(0)
assert np.allclose(indices, [0, 1, 10, 11])
assert np.allclose(buf.prev(indices), [0, 0, 10, 10])
assert np.allclose(buf.next(indices), [1, 1, 11, 11])
def test_multibuf_stack() -> None:
size = 5
bufsize = 9
stack_num = 4
cached_num = 3
env = MoveToRightEnv(size)
# test if CachedReplayBuffer can handle stack_num + ignore_obs_next
buf4 = CachedReplayBuffer(
ReplayBuffer(bufsize, stack_num=stack_num, ignore_obs_next=True),
cached_num,
size,
)
# test if CachedReplayBuffer can handle corner case:
# buffer + stack_num + ignore_obs_next + sample_avail
buf5 = CachedReplayBuffer(
ReplayBuffer(bufsize, stack_num=stack_num, ignore_obs_next=True, sample_avail=True),
cached_num,
size,
)
obs, info = env.reset(options={"state": 1})
obs = cast(np.ndarray, obs)
for i in range(18):
obs_next, rew, terminated, truncated, info = env.step(1)
done = terminated or truncated
obs_list = np.array([obs + size * i for i in range(cached_num)])
act_list = [1] * cached_num
rew_list = [rew] * cached_num
terminated_list = [terminated] * cached_num
truncated_list = [truncated] * cached_num
obs_next_list = -obs_list
info_list = [info] * cached_num
batch = Batch(
obs=obs_list,
act=act_list,
rew=rew_list,
terminated=terminated_list,
truncated=truncated_list,
obs_next=obs_next_list,
info=info_list,
)
buf5.add(batch)
buf4.add(batch)
assert np.all(buf4.obs == buf5.obs)
assert np.all(buf4.done == buf5.done)
assert np.all(buf4.terminated == buf5.terminated)
assert np.all(buf4.truncated == buf5.truncated)
obs = obs_next
if done:
# obs is an array, but the env is malformed, so we can't properly type it
obs, info = env.reset(options={"state": 1}) # type: ignore[assignment]
# check the `add` order is correct
assert np.allclose(
buf4.obs.reshape(-1),
[
12,
13,
14,
4,
6,
7,
8,
9,
11, # main_buffer
1,
2,
3,
4,
0, # cached_buffer[0]
6,
7,
8,
9,
0, # cached_buffer[1]
11,
12,
13,
14,
0, # cached_buffer[2]
],
), buf4.obs
assert np.allclose(
buf4.done,
[
0,
0,
1,
1,
0,
0,
0,
1,
0, # main_buffer
0,
0,
0,
1,
0, # cached_buffer[0]
0,
0,
0,
1,
0, # cached_buffer[1]
0,
0,
0,
1,
0, # cached_buffer[2]
],
), buf4.done
assert np.allclose(buf4.unfinished_index(), [10, 15, 20])
indices = np.array(sorted(buf4.sample_indices(0)))
assert np.allclose(indices, [*list(range(bufsize)), 9, 10, 14, 15, 19, 20])
cur_obs = buf4[indices].obs
assert isinstance(cur_obs, np.ndarray)
assert np.allclose(
cur_obs[..., 0],
[
[11, 11, 11, 12],
[11, 11, 12, 13],
[11, 12, 13, 14],
[4, 4, 4, 4],
[6, 6, 6, 6],
[6, 6, 6, 7],
[6, 6, 7, 8],
[6, 7, 8, 9],
[11, 11, 11, 11],
[1, 1, 1, 1],
[1, 1, 1, 2],
[6, 6, 6, 6],
[6, 6, 6, 7],
[11, 11, 11, 11],
[11, 11, 11, 12],
],
)
next_obs = buf4[indices].obs_next
assert isinstance(next_obs, np.ndarray)
assert np.allclose(
next_obs[..., 0],
[
[11, 11, 12, 13],
[11, 12, 13, 14],
[11, 12, 13, 14],
[4, 4, 4, 4],
[6, 6, 6, 7],
[6, 6, 7, 8],
[6, 7, 8, 9],
[6, 7, 8, 9],
[11, 11, 11, 12],
[1, 1, 1, 2],
[1, 1, 1, 2],
[6, 6, 6, 7],
[6, 6, 6, 7],
[11, 11, 11, 12],
[11, 11, 11, 12],
],
)
indices = buf5.sample_indices(0)
assert np.allclose(sorted(indices), [2, 7])
assert np.all(np.isin(buf5.sample_indices(100), indices))
# manually change the stack num
buf5.stack_num = 2
for buf in buf5.buffers:
buf.stack_num = 2
indices = buf5.sample_indices(0)
assert np.allclose(sorted(indices), [0, 1, 2, 5, 6, 7, 10, 15, 20])
batch_sample, _ = buf5.sample(0)
# test Atari with CachedReplayBuffer, save_only_last_obs + ignore_obs_next
buf6 = CachedReplayBuffer(
ReplayBuffer(bufsize, stack_num=stack_num, save_only_last_obs=True, ignore_obs_next=True),
cached_num,
size,
)
obs = np.random.rand(size, 4, 84, 84)
buf6.add(
Batch(
obs=[obs[2], obs[0]],
act=[1, 1],
rew=[0, 0],
terminated=[0, 1],
truncated=[0, 0],
obs_next=[obs[3], obs[1]],
),
buffer_ids=[1, 2],
)
assert buf6.obs.shape == (buf6.maxsize, 84, 84)
assert np.allclose(buf6.obs[0], obs[0, -1])
assert np.allclose(buf6.obs[14], obs[2, -1])
assert np.allclose(buf6.obs[19], obs[0, -1])
assert buf6[0].obs.shape == (4, 84, 84)
def test_multibuf_hdf5() -> None:
size = 100
buffers = {
"vector": VectorReplayBuffer(size * 4, 4),
"cached": CachedReplayBuffer(ReplayBuffer(size), 4, size),
}
buffer_types = {k: b.__class__ for k, b in buffers.items()}
device = "cuda" if torch.cuda.is_available() else "cpu"
info_t = torch.tensor([1.0]).to(device)
for i in range(4):
kwargs = {
"obs": Batch(index=np.array([i])),
"act": i,
"rew": np.array([1, 2]),
"terminated": i % 3 == 2,
"truncated": False,
"done": i % 3 == 2,
"info": {"number": {"n": i, "t": info_t}, "extra": None},
}
buffers["vector"].add(Batch.stack([kwargs, kwargs, kwargs]), buffer_ids=[0, 1, 2])
buffers["cached"].add(Batch.stack([kwargs, kwargs, kwargs]), buffer_ids=[0, 1, 2])
# save
paths = {}
for k, buf in buffers.items():
f, path = tempfile.mkstemp(suffix=".hdf5")
os.close(f)
buf.save_hdf5(path)
paths[k] = path
# load replay buffer
_buffers = {k: buffer_types[k].load_hdf5(paths[k]) for k in paths}
# compare
for k in buffers:
assert len(_buffers[k]) == len(buffers[k])
assert np.allclose(_buffers[k].act, buffers[k].act)
assert _buffers[k].stack_num == buffers[k].stack_num
assert _buffers[k].maxsize == buffers[k].maxsize
assert np.all(_buffers[k]._indices == buffers[k]._indices)
# check shallow copy in VectorReplayBuffer
for k in ["vector", "cached"]:
buffers[k].info.number.n[0] = -100
assert buffers[k].buffers[0].info.number.n[0] == -100
# check if still behave normally
for k in ["vector", "cached"]:
kwargs = {
"obs": Batch(index=np.array([5])),
"act": 5,
"rew": np.array([2, 1]),
"terminated": False,
"truncated": False,
"done": False,
"info": {"number": {"n": i}, "Timelimit.truncate": True},
}
buffers[k].add(Batch.stack([kwargs, kwargs, kwargs, kwargs]))
act = np.zeros(buffers[k].maxsize)
if k == "vector":
act[np.arange(5)] = np.array([0, 1, 2, 3, 5])
act[np.arange(5) + size] = np.array([0, 1, 2, 3, 5])
act[np.arange(5) + size * 2] = np.array([0, 1, 2, 3, 5])
act[size * 3] = 5
elif k == "cached":
act[np.arange(9)] = np.array([0, 1, 2, 0, 1, 2, 0, 1, 2])
act[np.arange(3) + size] = np.array([3, 5, 2])
act[np.arange(3) + size * 2] = np.array([3, 5, 2])
act[np.arange(3) + size * 3] = np.array([3, 5, 2])
act[size * 4] = 5
assert np.allclose(buffers[k].act, act)
info_keys = ["number", "extra", "Timelimit.truncate"]
assert set(buffers[k].info.keys()) == set(info_keys)
for path in paths.values():
os.remove(path)
def test_from_data() -> None:
obs_data: npt.NDArray[np.uint8] = np.ndarray((10, 3, 3), dtype="uint8")
for i in range(10):
obs_data[i] = i * np.ones((3, 3), dtype="uint8")
obs_next_data = np.zeros_like(obs_data)
obs_next_data[:-1] = obs_data[1:]
f, path = tempfile.mkstemp(suffix=".hdf5")
os.close(f)
with h5py.File(path, "w") as f:
obs = f.create_dataset("obs", data=obs_data)
act = f.create_dataset("act", data=np.arange(10, dtype="int32"))
rew = f.create_dataset("rew", data=np.arange(10, dtype="float32"))
terminated = f.create_dataset("terminated", data=np.zeros(10, dtype="bool"))
truncated = f.create_dataset("truncated", data=np.zeros(10, dtype="bool"))
done = f.create_dataset("done", data=np.zeros(10, dtype="bool"))
obs_next = f.create_dataset("obs_next", data=obs_next_data)
buf = ReplayBuffer.from_data(obs, act, rew, terminated, truncated, done, obs_next)
assert len(buf) == 10
batch = buf[3]
cur_obs = batch.obs
assert isinstance(cur_obs, np.ndarray)
assert np.array_equal(cur_obs, 3 * np.ones((3, 3), dtype="uint8"))
assert batch.act == 3
assert batch.rew == 3.0
assert not batch.done
next_obs = batch.obs_next
assert isinstance(next_obs, np.ndarray)
assert np.array_equal(next_obs, 4 * np.ones((3, 3), dtype="uint8"))
os.remove(path)
def test_custom_key() -> None:
batch = Batch(
obs_next=np.array(
[
[
1.174,
-0.1151,
-0.609,
-0.5205,
-0.9316,
3.236,
-2.418,
0.386,
0.2227,
-0.5117,
2.293,
],
],
),
rew=np.array([4.28125]),
act=np.array([[-0.3088, -0.4636, 0.4956]]),
truncated=np.array([False]),
obs=np.array(
[
[
1.193,
-0.1203,
-0.6123,
-0.519,
-0.9434,
3.32,
-2.266,
0.9116,
0.623,
0.1259,
0.363,
],
],
),
terminated=np.array([False]),
done=np.array([False]),
returns=np.array([74.70343082]),
info=Batch(),
policy=Batch(),
)
buffer_size = len(batch.rew)
buffer = ReplayBuffer(buffer_size)
buffer.add(batch)
sampled_batch, _ = buffer.sample(1)
# Check if they have the same keys
assert set(batch.get_keys()) == set(
sampled_batch.get_keys(),
), "Batches have different keys: {} and {}".format(
set(batch.get_keys()),
set(sampled_batch.get_keys()),
)
# Compare the values for each key
for key in batch.get_keys():
if isinstance(batch.__dict__[key], np.ndarray) and isinstance(
sampled_batch.__dict__[key],
np.ndarray,
):
assert np.allclose(
batch.__dict__[key],
sampled_batch.__dict__[key],
), f"Value mismatch for key: {key}"
if isinstance(batch.__dict__[key], Batch) and isinstance(
sampled_batch.__dict__[key],
Batch,
):
assert batch.__dict__[key].is_empty()
assert sampled_batch.__dict__[key].is_empty()