* add makefile * bump version * add isort and yapf * update contributing.md * update PR template * spelling check
179 lines
5.4 KiB
Python
179 lines
5.4 KiB
Python
from typing import Any, Dict, Optional, Sequence, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
|
|
from tianshou.utils.net.discrete import NoisyLinear
|
|
|
|
|
|
class DQN(nn.Module):
|
|
"""Reference: Human-level control through deep reinforcement learning.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
c: int,
|
|
h: int,
|
|
w: int,
|
|
action_shape: Sequence[int],
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
features_only: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.device = device
|
|
self.net = nn.Sequential(
|
|
nn.Conv2d(c, 32, kernel_size=8, stride=4), nn.ReLU(inplace=True),
|
|
nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(inplace=True),
|
|
nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(inplace=True),
|
|
nn.Flatten()
|
|
)
|
|
with torch.no_grad():
|
|
self.output_dim = np.prod(self.net(torch.zeros(1, c, h, w)).shape[1:])
|
|
if not features_only:
|
|
self.net = nn.Sequential(
|
|
self.net, nn.Linear(self.output_dim, 512), nn.ReLU(inplace=True),
|
|
nn.Linear(512, np.prod(action_shape))
|
|
)
|
|
self.output_dim = np.prod(action_shape)
|
|
|
|
def forward(
|
|
self,
|
|
x: Union[np.ndarray, torch.Tensor],
|
|
state: Optional[Any] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[torch.Tensor, Any]:
|
|
r"""Mapping: x -> Q(x, \*)."""
|
|
x = torch.as_tensor(x, device=self.device, dtype=torch.float32)
|
|
return self.net(x), state
|
|
|
|
|
|
class C51(DQN):
|
|
"""Reference: A distributional perspective on reinforcement learning.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
c: int,
|
|
h: int,
|
|
w: int,
|
|
action_shape: Sequence[int],
|
|
num_atoms: int = 51,
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
) -> None:
|
|
self.action_num = np.prod(action_shape)
|
|
super().__init__(c, h, w, [self.action_num * num_atoms], device)
|
|
self.num_atoms = num_atoms
|
|
|
|
def forward(
|
|
self,
|
|
x: Union[np.ndarray, torch.Tensor],
|
|
state: Optional[Any] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[torch.Tensor, Any]:
|
|
r"""Mapping: x -> Z(x, \*)."""
|
|
x, state = super().forward(x)
|
|
x = x.view(-1, self.num_atoms).softmax(dim=-1)
|
|
x = x.view(-1, self.action_num, self.num_atoms)
|
|
return x, state
|
|
|
|
|
|
class Rainbow(DQN):
|
|
"""Reference: Rainbow: Combining Improvements in Deep Reinforcement Learning.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
c: int,
|
|
h: int,
|
|
w: int,
|
|
action_shape: Sequence[int],
|
|
num_atoms: int = 51,
|
|
noisy_std: float = 0.5,
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
is_dueling: bool = True,
|
|
is_noisy: bool = True,
|
|
) -> None:
|
|
super().__init__(c, h, w, action_shape, device, features_only=True)
|
|
self.action_num = np.prod(action_shape)
|
|
self.num_atoms = num_atoms
|
|
|
|
def linear(x, y):
|
|
if is_noisy:
|
|
return NoisyLinear(x, y, noisy_std)
|
|
else:
|
|
return nn.Linear(x, y)
|
|
|
|
self.Q = nn.Sequential(
|
|
linear(self.output_dim, 512), nn.ReLU(inplace=True),
|
|
linear(512, self.action_num * self.num_atoms)
|
|
)
|
|
self._is_dueling = is_dueling
|
|
if self._is_dueling:
|
|
self.V = nn.Sequential(
|
|
linear(self.output_dim, 512), nn.ReLU(inplace=True),
|
|
linear(512, self.num_atoms)
|
|
)
|
|
self.output_dim = self.action_num * self.num_atoms
|
|
|
|
def forward(
|
|
self,
|
|
x: Union[np.ndarray, torch.Tensor],
|
|
state: Optional[Any] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[torch.Tensor, Any]:
|
|
r"""Mapping: x -> Z(x, \*)."""
|
|
x, state = super().forward(x)
|
|
q = self.Q(x)
|
|
q = q.view(-1, self.action_num, self.num_atoms)
|
|
if self._is_dueling:
|
|
v = self.V(x)
|
|
v = v.view(-1, 1, self.num_atoms)
|
|
logits = q - q.mean(dim=1, keepdim=True) + v
|
|
else:
|
|
logits = q
|
|
y = logits.softmax(dim=2)
|
|
return y, state
|
|
|
|
|
|
class QRDQN(DQN):
|
|
"""Reference: Distributional Reinforcement Learning with Quantile \
|
|
Regression.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
c: int,
|
|
h: int,
|
|
w: int,
|
|
action_shape: Sequence[int],
|
|
num_quantiles: int = 200,
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
) -> None:
|
|
self.action_num = np.prod(action_shape)
|
|
super().__init__(c, h, w, [self.action_num * num_quantiles], device)
|
|
self.num_quantiles = num_quantiles
|
|
|
|
def forward(
|
|
self,
|
|
x: Union[np.ndarray, torch.Tensor],
|
|
state: Optional[Any] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[torch.Tensor, Any]:
|
|
r"""Mapping: x -> Z(x, \*)."""
|
|
x, state = super().forward(x)
|
|
x = x.view(-1, self.action_num, self.num_quantiles)
|
|
return x, state
|