Tianshou/examples/box2d/bipedal_hardcore_sac.py
n+e fc251ab0b8
bump to v0.4.3 (#432)
* add makefile
* bump version
* add isort and yapf
* update contributing.md
* update PR template
* spelling check
2021-09-03 05:05:04 +08:00

200 lines
6.6 KiB
Python

import argparse
import os
import pprint
import gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.policy import SACPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default="BipedalWalkerHardcore-v3")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=1000000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.1)
parser.add_argument('--auto-alpha', type=int, default=1)
parser.add_argument('--alpha-lr', type=float, default=3e-4)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=100000)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128, 128])
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--n-step', type=int, default=4)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
parser.add_argument('--resume-path', type=str, default=None)
return parser.parse_args()
class Wrapper(gym.Wrapper):
"""Env wrapper for reward scale, action repeat and removing done penalty"""
def __init__(self, env, action_repeat=3, reward_scale=5, rm_done=True):
super().__init__(env)
self.action_repeat = action_repeat
self.reward_scale = reward_scale
self.rm_done = rm_done
def step(self, action):
r = 0.0
for _ in range(self.action_repeat):
obs, reward, done, info = self.env.step(action)
# remove done reward penalty
if not done or not self.rm_done:
r = r + reward
if done:
break
# scale reward
return obs, self.reward_scale * r, done, info
def test_sac_bipedal(args=get_args()):
env = Wrapper(gym.make(args.task))
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
train_envs = SubprocVectorEnv(
[lambda: Wrapper(gym.make(args.task)) for _ in range(args.training_num)]
)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[
lambda: Wrapper(gym.make(args.task), reward_scale=1, rm_done=False)
for _ in range(args.test_num)
]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = ActorProb(
net_a,
args.action_shape,
max_action=args.max_action,
device=args.device,
unbounded=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device
)
critic1 = Critic(net_c1, device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device
)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = SACPolicy(
actor,
actor_optim,
critic1,
critic1_optim,
critic2,
critic2_optim,
tau=args.tau,
gamma=args.gamma,
alpha=args.alpha,
estimation_step=args.n_step,
action_space=env.action_space
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path))
print("Loaded agent from: ", args.resume_path)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True
)
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.buffer_size)
# log
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
update_per_step=args.update_per_step,
test_in_train=False,
stop_fn=stop_fn,
save_fn=save_fn,
logger=logger
)
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_sac_bipedal()