n+e fc251ab0b8
bump to v0.4.3 (#432)
* add makefile
* bump version
* add isort and yapf
* update contributing.md
* update PR template
* spelling check
2021-09-03 05:05:04 +08:00

143 lines
5.4 KiB
Python

from abc import ABC, abstractmethod
from numbers import Number
from typing import Callable, Dict, Optional, Tuple, Union
import numpy as np
LOG_DATA_TYPE = Dict[str, Union[int, Number, np.number, np.ndarray]]
class BaseLogger(ABC):
"""The base class for any logger which is compatible with trainer.
Try to overwrite write() method to use your own writer.
:param int train_interval: the log interval in log_train_data(). Default to 1000.
:param int test_interval: the log interval in log_test_data(). Default to 1.
:param int update_interval: the log interval in log_update_data(). Default to 1000.
"""
def __init__(
self,
train_interval: int = 1000,
test_interval: int = 1,
update_interval: int = 1000,
) -> None:
super().__init__()
self.train_interval = train_interval
self.test_interval = test_interval
self.update_interval = update_interval
self.last_log_train_step = -1
self.last_log_test_step = -1
self.last_log_update_step = -1
@abstractmethod
def write(self, step_type: str, step: int, data: LOG_DATA_TYPE) -> None:
"""Specify how the writer is used to log data.
:param str step_type: namespace which the data dict belongs to.
:param int step: stands for the ordinate of the data dict.
:param dict data: the data to write with format ``{key: value}``.
"""
pass
def log_train_data(self, collect_result: dict, step: int) -> None:
"""Use writer to log statistics generated during training.
:param collect_result: a dict containing information of data collected in
training stage, i.e., returns of collector.collect().
:param int step: stands for the timestep the collect_result being logged.
.. note::
``collect_result`` will be modified in-place with "rew" and "len" keys.
"""
if collect_result["n/ep"] > 0:
collect_result["rew"] = collect_result["rews"].mean()
collect_result["len"] = collect_result["lens"].mean()
if step - self.last_log_train_step >= self.train_interval:
log_data = {
"train/episode": collect_result["n/ep"],
"train/reward": collect_result["rew"],
"train/length": collect_result["len"],
}
self.write("train/env_step", step, log_data)
self.last_log_train_step = step
def log_test_data(self, collect_result: dict, step: int) -> None:
"""Use writer to log statistics generated during evaluating.
:param collect_result: a dict containing information of data collected in
evaluating stage, i.e., returns of collector.collect().
:param int step: stands for the timestep the collect_result being logged.
.. note::
``collect_result`` will be modified in-place with "rew", "rew_std", "len",
and "len_std" keys.
"""
assert collect_result["n/ep"] > 0
rews, lens = collect_result["rews"], collect_result["lens"]
rew, rew_std, len_, len_std = rews.mean(), rews.std(), lens.mean(), lens.std()
collect_result.update(rew=rew, rew_std=rew_std, len=len_, len_std=len_std)
if step - self.last_log_test_step >= self.test_interval:
log_data = {
"test/env_step": step,
"test/reward": rew,
"test/length": len_,
"test/reward_std": rew_std,
"test/length_std": len_std,
}
self.write("test/env_step", step, log_data)
self.last_log_test_step = step
def log_update_data(self, update_result: dict, step: int) -> None:
"""Use writer to log statistics generated during updating.
:param update_result: a dict containing information of data collected in
updating stage, i.e., returns of policy.update().
:param int step: stands for the timestep the collect_result being logged.
"""
if step - self.last_log_update_step >= self.update_interval:
log_data = {f"update/{k}": v for k, v in update_result.items()}
self.write("update/gradient_step", step, log_data)
self.last_log_update_step = step
def save_data(
self,
epoch: int,
env_step: int,
gradient_step: int,
save_checkpoint_fn: Optional[Callable[[int, int, int], None]] = None,
) -> None:
"""Use writer to log metadata when calling ``save_checkpoint_fn`` in trainer.
:param int epoch: the epoch in trainer.
:param int env_step: the env_step in trainer.
:param int gradient_step: the gradient_step in trainer.
:param function save_checkpoint_fn: a hook defined by user, see trainer
documentation for detail.
"""
pass
def restore_data(self) -> Tuple[int, int, int]:
"""Return the metadata from existing log.
If it finds nothing or an error occurs during the recover process, it will
return the default parameters.
:return: epoch, env_step, gradient_step.
"""
pass
class LazyLogger(BaseLogger):
"""A logger that does nothing. Used as the placeholder in trainer."""
def __init__(self) -> None:
super().__init__()
def write(self, step_type: str, step: int, data: LOG_DATA_TYPE) -> None:
"""The LazyLogger writes nothing."""
pass