Tianshou/examples/pong_dqn.py
n+e 47e8e2686c
move atari wrapper to examples and publish v0.2.4 (#124)
* move atari wrapper to examples

* consistency

* change drqn seed since it is quite unstable in current seed

* minor fix

* 0.2.4
2020-07-10 17:20:39 +08:00

114 lines
4.2 KiB
Python

import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import DQNPolicy
from tianshou.env import SubprocVectorEnv
from tianshou.utils.net.discrete import DQN
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from atari import create_atari_environment, preprocess_fn
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pong')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--n-step', type=int, default=1)
parser.add_argument('--target-update-freq', type=int, default=320)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=1000)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=3)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=8)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_dqn(args=get_args()):
env = create_atari_environment(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.env.action_space.shape or env.env.action_space.n
# train_envs = gym.make(args.task)
train_envs = SubprocVectorEnv([
lambda: create_atari_environment(args.task)
for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv([
lambda: create_atari_environment(args.task)
for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = DQN(
args.state_shape[0], args.state_shape[1],
args.action_shape, args.device)
net = net.to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = DQNPolicy(
net, optim, args.gamma, args.n_step,
use_target_network=args.target_update_freq > 0,
target_update_freq=args.target_update_freq)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size),
preprocess_fn=preprocess_fn)
test_collector = Collector(policy, test_envs, preprocess_fn=preprocess_fn)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * 4)
print(len(train_collector.buffer))
# log
writer = SummaryWriter(args.logdir + '/' + 'dqn')
def stop_fn(x):
if env.env.spec.reward_threshold:
return x >= env.spec.reward_threshold
else:
return False
def train_fn(x):
policy.set_eps(args.eps_train)
def test_fn(x):
policy.set_eps(args.eps_test)
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, train_fn=train_fn, test_fn=test_fn,
stop_fn=stop_fn, writer=writer, task=args.task)
train_collector.close()
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = create_atari_environment(args.task)
collector = Collector(policy, env, preprocess_fn=preprocess_fn)
result = collector.collect(n_episode=1, render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
if __name__ == '__main__':
test_dqn(get_args())