Tianshou/examples/box2d/bipedal_hardcore_sac.py
maxhuettenrauch 522f7fbf98
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:

1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.

They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`

```python

T = TypeVar("T", bound=int)


def f() -> T:
  return 3
```

3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...

Closes #933

---------

Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00

195 lines
6.7 KiB
Python

import argparse
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.policy import SACPolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="BipedalWalkerHardcore-v3")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--buffer-size", type=int, default=1000000)
parser.add_argument("--actor-lr", type=float, default=3e-4)
parser.add_argument("--critic-lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--tau", type=float, default=0.005)
parser.add_argument("--alpha", type=float, default=0.1)
parser.add_argument("--auto-alpha", type=int, default=1)
parser.add_argument("--alpha-lr", type=float, default=3e-4)
parser.add_argument("--epoch", type=int, default=100)
parser.add_argument("--step-per-epoch", type=int, default=100000)
parser.add_argument("--step-per-collect", type=int, default=10)
parser.add_argument("--update-per-step", type=float, default=0.1)
parser.add_argument("--batch-size", type=int, default=128)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128])
parser.add_argument("--training-num", type=int, default=10)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument("--n-step", type=int, default=4)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--resume-path", type=str, default=None)
return parser.parse_args()
class Wrapper(gym.Wrapper):
"""Env wrapper for reward scale, action repeat and removing done penalty."""
def __init__(self, env, action_repeat=3, reward_scale=5, rm_done=True):
super().__init__(env)
self.action_repeat = action_repeat
self.reward_scale = reward_scale
self.rm_done = rm_done
def step(self, action):
rew_sum = 0.0
for _ in range(self.action_repeat):
obs, rew, done, info = self.env.step(action)
# remove done reward penalty
if not done or not self.rm_done:
rew_sum = rew_sum + rew
if done:
break
# scale reward
return obs, self.reward_scale * rew_sum, done, info
def test_sac_bipedal(args=get_args()):
env = Wrapper(gym.make(args.task))
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
train_envs = SubprocVectorEnv(
[lambda: Wrapper(gym.make(args.task)) for _ in range(args.training_num)],
)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[
lambda: Wrapper(gym.make(args.task), reward_scale=1, rm_done=False)
for _ in range(args.test_num)
],
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = ActorProb(net_a, args.action_shape, device=args.device, unbounded=True).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic1 = Critic(net_c1, device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = SACPolicy(
actor=actor,
actor_optim=actor_optim,
critic=critic1,
critic_optim=critic1_optim,
critic2=critic2,
critic2_optim=critic2_optim,
tau=args.tau,
gamma=args.gamma,
alpha=args.alpha,
estimation_step=args.n_step,
action_space=env.action_space,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path))
print("Loaded agent from: ", args.resume_path)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True,
)
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.buffer_size)
# log
log_path = os.path.join(args.logdir, args.task, "sac")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
update_per_step=args.update_per_step,
test_in_train=False,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f"Final reward: {result.returns_stat.mean}, length: {result.lens_stat.mean}")
if __name__ == "__main__":
test_sac_bipedal()