This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
Offline
In offline reinforcement learning setting, the agent learns a policy from a fixed dataset which is collected once with any policy. And the agent does not interact with environment anymore.
Continuous control
Once the dataset is collected, it will not be changed during training. We use d4rl datasets to train offline agent for continuous control. You can refer to d4rl to see how to use d4rl datasets.
We provide implementation of BCQ and CQL algorithm for continuous control.
Train
Tianshou provides an offline_trainer
for offline reinforcement learning. You can parse d4rl datasets into a ReplayBuffer
, and set it as the parameter buffer
of offline_trainer
. d4rl_bcq.py
is an example of offline RL using the d4rl dataset.
Results
IL (Imitation Learning, aka, Behavior Cloning)
Environment | Dataset | IL | Parameters |
---|---|---|---|
HalfCheetah-v2 | halfcheetah-expert-v2 | 11355.31 | python3 d4rl_il.py --task HalfCheetah-v2 --expert-data-task halfcheetah-expert-v2 |
HalfCheetah-v2 | halfcheetah-medium-v2 | 5098.16 | python3 d4rl_il.py --task HalfCheetah-v2 --expert-data-task halfcheetah-medium-v2 |
BCQ
Environment | Dataset | BCQ | Parameters |
---|---|---|---|
HalfCheetah-v2 | halfcheetah-expert-v2 | 11509.95 | python3 d4rl_bcq.py --task HalfCheetah-v2 --expert-data-task halfcheetah-expert-v2 |
HalfCheetah-v2 | halfcheetah-medium-v2 | 5147.43 | python3 d4rl_bcq.py --task HalfCheetah-v2 --expert-data-task halfcheetah-medium-v2 |
CQL
Environment | Dataset | CQL | Parameters |
---|---|---|---|
HalfCheetah-v2 | halfcheetah-expert-v2 | 2864.37 | python3 d4rl_cql.py --task HalfCheetah-v2 --expert-data-task halfcheetah-expert-v2 |
HalfCheetah-v2 | halfcheetah-medium-v2 | 6505.41 | python3 d4rl_cql.py --task HalfCheetah-v2 --expert-data-task halfcheetah-medium-v2 |
TD3+BC
Environment | Dataset | CQL | Parameters |
---|---|---|---|
HalfCheetah-v2 | halfcheetah-expert-v2 | 11788.25 | python3 d4rl_td3_bc.py --task HalfCheetah-v2 --expert-data-task halfcheetah-expert-v2 |
HalfCheetah-v2 | halfcheetah-medium-v2 | 5741.13 | python3 d4rl_td3_bc.py --task HalfCheetah-v2 --expert-data-task halfcheetah-medium-v2 |
Observation normalization
Following the original paper, we use observation normalization by default. You can turn it off by setting --norm-obs 0
. The difference are small but consistent.
Dataset | w/ norm-obs | w/o norm-obs |
---|---|---|
halfcheeta-medium-v2 | 5741.13 | 5724.41 |
halfcheeta-expert-v2 | 11788.25 | 11665.77 |
walker2d-medium-v2 | 4051.76 | 3985.59 |
walker2d-expert-v2 | 5068.15 | 5027.75 |
Discrete control
For discrete control, we currently use ad hoc Atari data generated from a trained QRDQN agent.
Gather Data
To running CQL algorithm on Atari, you need to do the following things:
- Train an expert, by using the command listed in the QRDQN section of Atari examples:
python3 atari_qrdqn.py --task {your_task}
- Generate buffer with noise:
python3 atari_qrdqn.py --task {your_task} --watch --resume-path log/{your_task}/qrdqn/policy.pth --eps-test 0.2 --buffer-size 1000000 --save-buffer-name expert.hdf5
(note that 1M Atari buffer cannot be saved as.pkl
format because it is too large and will cause error); - Train offline model:
python3 atari_{bcq,cql,crr}.py --task {your_task} --load-buffer-name expert.hdf5
.
IL
We test our IL implementation on two example tasks (different from author's version, we use v4 instead of v0; one epoch means 10k gradient step):
Task | Online QRDQN | Behavioral | IL | parameters |
---|---|---|---|---|
PongNoFrameskip-v4 | 20.5 | 6.8 | 20.0 (epoch 5) | python3 atari_il.py --task PongNoFrameskip-v4 --load-buffer-name log/PongNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 5 |
BreakoutNoFrameskip-v4 | 394.3 | 46.9 | 121.9 (epoch 12, could be higher) | python3 atari_il.py --task BreakoutNoFrameskip-v4 --load-buffer-name log/BreakoutNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 12 |
BCQ
We test our BCQ implementation on two example tasks (different from author's version, we use v4 instead of v0; one epoch means 10k gradient step):
Task | Online QRDQN | Behavioral | BCQ | parameters |
---|---|---|---|---|
PongNoFrameskip-v4 | 20.5 | 6.8 | 20.1 (epoch 5) | python3 atari_bcq.py --task PongNoFrameskip-v4 --load-buffer-name log/PongNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 5 |
BreakoutNoFrameskip-v4 | 394.3 | 46.9 | 64.6 (epoch 12, could be higher) | python3 atari_bcq.py --task BreakoutNoFrameskip-v4 --load-buffer-name log/BreakoutNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 12 |
CQL
We test our CQL implementation on two example tasks (different from author's version, we use v4 instead of v0; one epoch means 10k gradient step):
Task | Online QRDQN | Behavioral | CQL | parameters |
---|---|---|---|---|
PongNoFrameskip-v4 | 20.5 | 6.8 | 20.4 (epoch 5) | python3 atari_cql.py --task PongNoFrameskip-v4 --load-buffer-name log/PongNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 5 |
BreakoutNoFrameskip-v4 | 394.3 | 46.9 | 129.4 (epoch 12) | python3 atari_cql.py --task BreakoutNoFrameskip-v4 --load-buffer-name log/BreakoutNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 12 --min-q-weight 50 |
We reduce the size of the offline data to 10% and 1% of the above and get:
Buffer size 100000:
Task | Online QRDQN | Behavioral | CQL | parameters |
---|---|---|---|---|
PongNoFrameskip-v4 | 20.5 | 5.8 | 21 (epoch 5) | python3 atari_cql.py --task PongNoFrameskip-v4 --load-buffer-name log/PongNoFrameskip-v4/qrdqn/expert.size_1e5.hdf5 --epoch 5 |
BreakoutNoFrameskip-v4 | 394.3 | 41.4 | 40.8 (epoch 12) | python3 atari_cql.py --task BreakoutNoFrameskip-v4 --load-buffer-name log/BreakoutNoFrameskip-v4/qrdqn/expert.size_1e5.hdf5 --epoch 12 --min-q-weight 20 |
Buffer size 10000:
Task | Online QRDQN | Behavioral | CQL | parameters |
---|---|---|---|---|
PongNoFrameskip-v4 | 20.5 | nan | 1.8 (epoch 5) | python3 atari_cql.py --task PongNoFrameskip-v4 --load-buffer-name log/PongNoFrameskip-v4/qrdqn/expert.size_1e4.hdf5 --epoch 5 --min-q-weight 1 |
BreakoutNoFrameskip-v4 | 394.3 | 31.7 | 22.5 (epoch 12) | python3 atari_cql.py --task BreakoutNoFrameskip-v4 --load-buffer-name log/BreakoutNoFrameskip-v4/qrdqn/expert.size_1e4.hdf5 --epoch 12 --min-q-weight 10 |
CRR
We test our CRR implementation on two example tasks (different from author's version, we use v4 instead of v0; one epoch means 10k gradient step):
Task | Online QRDQN | Behavioral | CRR | CRR w/ CQL | parameters |
---|---|---|---|---|---|
PongNoFrameskip-v4 | 20.5 | 6.8 | -21 (epoch 5) | 17.7 (epoch 5) | python3 atari_crr.py --task PongNoFrameskip-v4 --load-buffer-name log/PongNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 5 |
BreakoutNoFrameskip-v4 | 394.3 | 46.9 | 23.3 (epoch 12) | 76.9 (epoch 12) | python3 atari_crr.py --task BreakoutNoFrameskip-v4 --load-buffer-name log/BreakoutNoFrameskip-v4/qrdqn/expert.hdf5 --epoch 12 --min-q-weight 50 |
Note that CRR itself does not work well in Atari tasks but adding CQL loss/regularizer helps.
RL Unplugged Data
We provide a script to convert the Atari datasets of RL Unplugged to Tianshou ReplayBuffer.
For example, the following command will download the first shard of the first run of Breakout game to ~/.rl_unplugged/datasets/Breakout/run_1-00001-of-00100
then convert it to a tianshou.data.ReplayBuffer
and save it to ~/.rl_unplugged/buffers/Breakout/run_1-00001-of-00100.hdf5
(use --dataset-dir
and --buffer-dir
to change the default directories):
python3 convert_rl_unplugged_atari.py --task Breakout --run-id 1 --shard-id 1
Then you can use it to train an agent by:
python3 atari_bcq.py --task BreakoutNoFrameskip-v4 --load-buffer-name ~/.rl_unplugged/datasets/Breakout/run_1-00001-of-00100.hdf5 --buffer-from-rl-unplugged --epoch 12
Note:
- Each shard contains about 500k transitions.
- This conversion script depends on Tensorflow.
- It takes about 1 hour to process one shard on my machine. YMMV.