import numpy as np import tensorflow as tf from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm from baselines.common.distributions import make_pdtype from baselines.common.input import observation_input def nature_cnn(unscaled_images, **conv_kwargs): """ CNN from Nature paper. """ scaled_images = tf.cast(unscaled_images, tf.float32) / 255. activ = tf.nn.relu h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs)) h3 = conv_to_fc(h3) return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))) class LnLstmPolicy(object): def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False): nenv = nbatch // nsteps X, processed_x = observation_input(ob_space, nbatch) M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states self.pdtype = make_pdtype(ac_space) with tf.variable_scope("model", reuse=reuse): h = nature_cnn(processed_x) xs = batch_to_seq(h, nenv, nsteps) ms = batch_to_seq(M, nenv, nsteps) h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm) h5 = seq_to_batch(h5) vf = fc(h5, 'v', 1) self.pd, self.pi = self.pdtype.pdfromlatent(h5) v0 = vf[:, 0] a0 = self.pd.sample() neglogp0 = self.pd.neglogp(a0) self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32) def step(ob, state, mask): return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask}) def value(ob, state, mask): return sess.run(v0, {X:ob, S:state, M:mask}) self.X = X self.M = M self.S = S self.vf = vf self.step = step self.value = value class LstmPolicy(object): def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False): nenv = nbatch // nsteps self.pdtype = make_pdtype(ac_space) X, processed_x = observation_input(ob_space, nbatch) M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states with tf.variable_scope("model", reuse=reuse): h = nature_cnn(X) xs = batch_to_seq(h, nenv, nsteps) ms = batch_to_seq(M, nenv, nsteps) h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm) h5 = seq_to_batch(h5) vf = fc(h5, 'v', 1) self.pd, self.pi = self.pdtype.pdfromlatent(h5) v0 = vf[:, 0] a0 = self.pd.sample() neglogp0 = self.pd.neglogp(a0) self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32) def step(ob, state, mask): return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask}) def value(ob, state, mask): return sess.run(v0, {X:ob, S:state, M:mask}) self.X = X self.M = M self.S = S self.vf = vf self.step = step self.value = value class CnnPolicy(object): def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False, **conv_kwargs): #pylint: disable=W0613 self.pdtype = make_pdtype(ac_space) X, processed_x = observation_input(ob_space, nbatch) with tf.variable_scope("model", reuse=reuse): h = nature_cnn(processed_x, **conv_kwargs) vf = fc(h, 'v', 1)[:,0] self.pd, self.pi = self.pdtype.pdfromlatent(h, init_scale=0.01) a0 = self.pd.sample() neglogp0 = self.pd.neglogp(a0) self.initial_state = None def step(ob, *_args, **_kwargs): a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob}) return a, v, self.initial_state, neglogp def value(ob, *_args, **_kwargs): return sess.run(vf, {X:ob}) self.X = X self.vf = vf self.step = step self.value = value class MlpPolicy(object): def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613 self.pdtype = make_pdtype(ac_space) with tf.variable_scope("model", reuse=reuse): X, processed_x = observation_input(ob_space, nbatch) activ = tf.tanh processed_x = tf.layers.flatten(processed_x) pi_h1 = activ(fc(processed_x, 'pi_fc1', nh=64, init_scale=np.sqrt(2))) pi_h2 = activ(fc(pi_h1, 'pi_fc2', nh=64, init_scale=np.sqrt(2))) vf_h1 = activ(fc(processed_x, 'vf_fc1', nh=64, init_scale=np.sqrt(2))) vf_h2 = activ(fc(vf_h1, 'vf_fc2', nh=64, init_scale=np.sqrt(2))) vf = fc(vf_h2, 'vf', 1)[:,0] self.pd, self.pi = self.pdtype.pdfromlatent(pi_h2, init_scale=0.01) a0 = self.pd.sample() neglogp0 = self.pd.neglogp(a0) self.initial_state = None def step(ob, *_args, **_kwargs): a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob}) return a, v, self.initial_state, neglogp def value(ob, *_args, **_kwargs): return sess.run(vf, {X:ob}) self.X = X self.vf = vf self.step = step self.value = value