import gym import numpy as np import os import pickle import random import tempfile import zipfile def zipsame(*seqs): L = len(seqs[0]) assert all(len(seq) == L for seq in seqs[1:]) return zip(*seqs) def unpack(seq, sizes): """ Unpack 'seq' into a sequence of lists, with lengths specified by 'sizes'. None = just one bare element, not a list Example: unpack([1,2,3,4,5,6], [3,None,2]) -> ([1,2,3], 4, [5,6]) """ seq = list(seq) it = iter(seq) assert sum(1 if s is None else s for s in sizes) == len(seq), "Trying to unpack %s into %s" % (seq, sizes) for size in sizes: if size is None: yield it.__next__() else: li = [] for _ in range(size): li.append(it.__next__()) yield li class EzPickle(object): """Objects that are pickled and unpickled via their constructor arguments. Example usage: class Dog(Animal, EzPickle): def __init__(self, furcolor, tailkind="bushy"): Animal.__init__() EzPickle.__init__(furcolor, tailkind) ... When this object is unpickled, a new Dog will be constructed by passing the provided furcolor and tailkind into the constructor. However, philosophers are still not sure whether it is still the same dog. This is generally needed only for environments which wrap C/C++ code, such as MuJoCo and Atari. """ def __init__(self, *args, **kwargs): self._ezpickle_args = args self._ezpickle_kwargs = kwargs def __getstate__(self): return {"_ezpickle_args": self._ezpickle_args, "_ezpickle_kwargs": self._ezpickle_kwargs} def __setstate__(self, d): out = type(self)(*d["_ezpickle_args"], **d["_ezpickle_kwargs"]) self.__dict__.update(out.__dict__) def set_global_seeds(i): try: import tensorflow as tf except ImportError: pass else: tf.set_random_seed(i) np.random.seed(i) random.seed(i) def pretty_eta(seconds_left): """Print the number of seconds in human readable format. Examples: 2 days 2 hours and 37 minutes less than a minute Paramters --------- seconds_left: int Number of seconds to be converted to the ETA Returns ------- eta: str String representing the pretty ETA. """ minutes_left = seconds_left // 60 seconds_left %= 60 hours_left = minutes_left // 60 minutes_left %= 60 days_left = hours_left // 24 hours_left %= 24 def helper(cnt, name): return "{} {}{}".format(str(cnt), name, ('s' if cnt > 1 else '')) if days_left > 0: msg = helper(days_left, 'day') if hours_left > 0: msg += ' and ' + helper(hours_left, 'hour') return msg if hours_left > 0: msg = helper(hours_left, 'hour') if minutes_left > 0: msg += ' and ' + helper(minutes_left, 'minute') return msg if minutes_left > 0: return helper(minutes_left, 'minute') return 'less than a minute' class RunningAvg(object): def __init__(self, gamma, init_value=None): """Keep a running estimate of a quantity. This is a bit like mean but more sensitive to recent changes. Parameters ---------- gamma: float Must be between 0 and 1, where 0 is the most sensitive to recent changes. init_value: float or None Initial value of the estimate. If None, it will be set on the first update. """ self._value = init_value self._gamma = gamma def update(self, new_val): """Update the estimate. Parameters ---------- new_val: float new observated value of estimated quantity. """ if self._value is None: self._value = new_val else: self._value = self._gamma * self._value + (1.0 - self._gamma) * new_val def __float__(self): """Get the current estimate""" return self._value def boolean_flag(parser, name, default=False, help=None): """Add a boolean flag to argparse parser. Parameters ---------- parser: argparse.Parser parser to add the flag to name: str -- will enable the flag, while --no- will disable it default: bool or None default value of the flag help: str help string for the flag """ dest = name.replace('-', '_') parser.add_argument("--" + name, action="store_true", default=default, dest=dest, help=help) parser.add_argument("--no-" + name, action="store_false", dest=dest) def get_wrapper_by_name(env, classname): """Given an a gym environment possibly wrapped multiple times, returns a wrapper of class named classname or raises ValueError if no such wrapper was applied Parameters ---------- env: gym.Env of gym.Wrapper gym environment classname: str name of the wrapper Returns ------- wrapper: gym.Wrapper wrapper named classname """ currentenv = env while True: if classname == currentenv.class_name(): return currentenv elif isinstance(currentenv, gym.Wrapper): currentenv = currentenv.env else: raise ValueError("Couldn't find wrapper named %s" % classname) def relatively_safe_pickle_dump(obj, path, compression=False): """This is just like regular pickle dump, except from the fact that failure cases are different: - It's never possible that we end up with a pickle in corrupted state. - If a there was a different file at the path, that file will remain unchanged in the even of failure (provided that filesystem rename is atomic). - it is sometimes possible that we end up with useless temp file which needs to be deleted manually (it will be removed automatically on the next function call) The indended use case is periodic checkpoints of experiment state, such that we never corrupt previous checkpoints if the current one fails. Parameters ---------- obj: object object to pickle path: str path to the output file compression: bool if true pickle will be compressed """ temp_storage = path + ".relatively_safe" if compression: # Using gzip here would be simpler, but the size is limited to 2GB with tempfile.NamedTemporaryFile() as uncompressed_file: pickle.dump(obj, uncompressed_file) uncompressed_file.file.flush() with zipfile.ZipFile(temp_storage, "w", compression=zipfile.ZIP_DEFLATED) as myzip: myzip.write(uncompressed_file.name, "data") else: with open(temp_storage, "wb") as f: pickle.dump(obj, f) os.rename(temp_storage, path) def pickle_load(path, compression=False): """Unpickle a possible compressed pickle. Parameters ---------- path: str path to the output file compression: bool if true assumes that pickle was compressed when created and attempts decompression. Returns ------- obj: object the unpickled object """ if compression: with zipfile.ZipFile(path, "r", compression=zipfile.ZIP_DEFLATED) as myzip: with myzip.open("data") as f: return pickle.load(f) else: with open(path, "rb") as f: return pickle.load(f)