import numpy as np import tensorflow as tf # pylint: ignore-module import copy import os import functools import collections import multiprocessing def switch(condition, then_expression, else_expression): """Switches between two operations depending on a scalar value (int or bool). Note that both `then_expression` and `else_expression` should be symbolic tensors of the *same shape*. # Arguments condition: scalar tensor. then_expression: TensorFlow operation. else_expression: TensorFlow operation. """ x_shape = copy.copy(then_expression.get_shape()) x = tf.cond(tf.cast(condition, 'bool'), lambda: then_expression, lambda: else_expression) x.set_shape(x_shape) return x # ================================================================ # Extras # ================================================================ def lrelu(x, leak=0.2): f1 = 0.5 * (1 + leak) f2 = 0.5 * (1 - leak) return f1 * x + f2 * abs(x) # ================================================================ # Mathematical utils # ================================================================ def huber_loss(x, delta=1.0): """Reference: https://en.wikipedia.org/wiki/Huber_loss""" return tf.where( tf.abs(x) < delta, tf.square(x) * 0.5, delta * (tf.abs(x) - 0.5 * delta) ) # ================================================================ # Global session # ================================================================ def make_session(num_cpu=None, make_default=False, graph=None): """Returns a session that will use CPU's only""" if num_cpu is None: num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count())) tf_config = tf.ConfigProto( inter_op_parallelism_threads=num_cpu, intra_op_parallelism_threads=num_cpu) tf_config.gpu_options.allow_growth = True if make_default: return tf.InteractiveSession(config=tf_config, graph=graph) else: return tf.Session(config=tf_config, graph=graph) def single_threaded_session(): """Returns a session which will only use a single CPU""" return make_session(num_cpu=1) def in_session(f): @functools.wraps(f) def newfunc(*args, **kwargs): with tf.Session(): f(*args, **kwargs) return newfunc ALREADY_INITIALIZED = set() def initialize(): """Initialize all the uninitialized variables in the global scope.""" new_variables = set(tf.global_variables()) - ALREADY_INITIALIZED tf.get_default_session().run(tf.variables_initializer(new_variables)) ALREADY_INITIALIZED.update(new_variables) # ================================================================ # Model components # ================================================================ def normc_initializer(std=1.0, axis=0): def _initializer(shape, dtype=None, partition_info=None): # pylint: disable=W0613 out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=axis, keepdims=True)) return tf.constant(out) return _initializer def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None, summary_tag=None): with tf.variable_scope(name): stride_shape = [1, stride[0], stride[1], 1] filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters] # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = intprod(filter_shape[:3]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = intprod(filter_shape[:2]) * num_filters # initialize weights with random weights w_bound = np.sqrt(6. / (fan_in + fan_out)) w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound), collections=collections) b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.zeros_initializer(), collections=collections) if summary_tag is not None: tf.summary.image(summary_tag, tf.transpose(tf.reshape(w, [filter_size[0], filter_size[1], -1, 1]), [2, 0, 1, 3]), max_images=10) return tf.nn.conv2d(x, w, stride_shape, pad) + b # ================================================================ # Theano-like Function # ================================================================ def function(inputs, outputs, updates=None, givens=None): """Just like Theano function. Take a bunch of tensorflow placeholders and expressions computed based on those placeholders and produces f(inputs) -> outputs. Function f takes values to be fed to the input's placeholders and produces the values of the expressions in outputs. Input values can be passed in the same order as inputs or can be provided as kwargs based on placeholder name (passed to constructor or accessible via placeholder.op.name). Example: x = tf.placeholder(tf.int32, (), name="x") y = tf.placeholder(tf.int32, (), name="y") z = 3 * x + 2 * y lin = function([x, y], z, givens={y: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(x=3) == 9 assert lin(2, 2) == 10 assert lin(x=2, y=3) == 12 Parameters ---------- inputs: [tf.placeholder, tf.constant, or object with make_feed_dict method] list of input arguments outputs: [tf.Variable] or tf.Variable list of outputs or a single output to be returned from function. Returned value will also have the same shape. """ if isinstance(outputs, list): return _Function(inputs, outputs, updates, givens=givens) elif isinstance(outputs, (dict, collections.OrderedDict)): f = _Function(inputs, outputs.values(), updates, givens=givens) return lambda *args, **kwargs: type(outputs)(zip(outputs.keys(), f(*args, **kwargs))) else: f = _Function(inputs, [outputs], updates, givens=givens) return lambda *args, **kwargs: f(*args, **kwargs)[0] class _Function(object): def __init__(self, inputs, outputs, updates, givens): for inpt in inputs: if not hasattr(inpt, 'make_feed_dict') and not (type(inpt) is tf.Tensor and len(inpt.op.inputs) == 0): assert False, "inputs should all be placeholders, constants, or have a make_feed_dict method" self.inputs = inputs updates = updates or [] self.update_group = tf.group(*updates) self.outputs_update = list(outputs) + [self.update_group] self.givens = {} if givens is None else givens def _feed_input(self, feed_dict, inpt, value): if hasattr(inpt, 'make_feed_dict'): feed_dict.opt(inpt.make_feed_dict(value)) else: feed_dict[inpt] = value def __call__(self, *args): assert len(args) <= len(self.inputs), "Too many arguments provided" feed_dict = {} # Update the args for inpt, value in zip(self.inputs, args): self._feed_input(feed_dict, inpt, value) # Update feed dict with givens. for inpt in self.givens: feed_dict[inpt] = feed_dict.get(inpt, self.givens[inpt]) results = tf.get_default_session().run(self.outputs_update, feed_dict=feed_dict)[:-1] return results # ================================================================ # Flat vectors # ================================================================ def var_shape(x): out = x.get_shape().as_list() assert all(isinstance(a, int) for a in out), \ "shape function assumes that shape is fully known" return out def numel(x): return intprod(var_shape(x)) def intprod(x): return int(np.prod(x)) def flatgrad(loss, var_list, clip_norm=None): grads = tf.gradients(loss, var_list) if clip_norm is not None: grads = [tf.clip_by_norm(grad, clip_norm=clip_norm) for grad in grads] return tf.concat(axis=0, values=[ tf.reshape(grad if grad is not None else tf.zeros_like(v), [numel(v)]) for (v, grad) in zip(var_list, grads) ]) class SetFromFlat(object): def __init__(self, var_list, dtype=tf.float32): assigns = [] shapes = list(map(var_shape, var_list)) total_size = np.sum([intprod(shape) for shape in shapes]) self.theta = theta = tf.placeholder(dtype, [total_size]) start = 0 assigns = [] for (shape, v) in zip(shapes, var_list): size = intprod(shape) assigns.append(tf.assign(v, tf.reshape(theta[start:start + size], shape))) start += size self.op = tf.group(*assigns) def __call__(self, theta): tf.get_default_session().run(self.op, feed_dict={self.theta: theta}) class GetFlat(object): def __init__(self, var_list): self.op = tf.concat(axis=0, values=[tf.reshape(v, [numel(v)]) for v in var_list]) def __call__(self): return tf.get_default_session().run(self.op) _PLACEHOLDER_CACHE = {} # name -> (placeholder, dtype, shape) def get_placeholder(name, dtype, shape): if name in _PLACEHOLDER_CACHE: out, dtype1, shape1 = _PLACEHOLDER_CACHE[name] assert dtype1 == dtype and shape1 == shape return out else: out = tf.placeholder(dtype=dtype, shape=shape, name=name) _PLACEHOLDER_CACHE[name] = (out, dtype, shape) return out def get_placeholder_cached(name): return _PLACEHOLDER_CACHE[name][0] def flattenallbut0(x): return tf.reshape(x, [-1, intprod(x.get_shape().as_list()[1:])]) # ================================================================ # Diagnostics # ================================================================ def display_var_info(vars): from baselines import logger count_params = 0 for v in vars: name = v.name if "/Adam" in name or "beta1_power" in name or "beta2_power" in name: continue v_params = np.prod(v.shape.as_list()) count_params += v_params if "/b:" in name or "/biases" in name: continue # Wx+b, bias is not interesting to look at => count params, but not print logger.info(" %s%s %i params %s" % (name, " "*(55-len(name)), v_params, str(v.shape))) logger.info("Total model parameters: %0.2f million" % (count_params*1e-6)) def get_available_gpus(): # recipe from here: # https://stackoverflow.com/questions/38559755/how-to-get-current-available-gpus-in-tensorflow?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa from tensorflow.python.client import device_lib local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type == 'GPU'] # ================================================================ # Saving variables # ================================================================ def load_state(fname): saver = tf.train.Saver() saver.restore(tf.get_default_session(), fname) def save_state(fname): os.makedirs(os.path.dirname(fname), exist_ok=True) saver = tf.train.Saver() saver.save(tf.get_default_session(), fname)