diffusion_policy/eval_real_robot.py
2023-03-07 16:07:15 -05:00

419 lines
18 KiB
Python

"""
Usage:
(robodiff)$ python eval_real_robot.py -i <ckpt_path> -o <save_dir> --robot_ip <ip_of_ur5>
================ Human in control ==============
Robot movement:
Move your SpaceMouse to move the robot EEF (locked in xy plane).
Press SpaceMouse right button to unlock z axis.
Press SpaceMouse left button to enable rotation axes.
Recording control:
Click the opencv window (make sure it's in focus).
Press "C" to start evaluation (hand control over to policy).
Press "Q" to exit program.
================ Policy in control ==============
Make sure you can hit the robot hardware emergency-stop button quickly!
Recording control:
Press "S" to stop evaluation and gain control back.
"""
# %%
import time
from multiprocessing.managers import SharedMemoryManager
import click
import cv2
import numpy as np
import torch
import dill
import hydra
import pathlib
import skvideo.io
from omegaconf import OmegaConf
import scipy.spatial.transform as st
from diffusion_policy.real_world.real_env import RealEnv
from diffusion_policy.real_world.spacemouse_shared_memory import Spacemouse
from diffusion_policy.common.precise_sleep import precise_wait
from diffusion_policy.real_world.real_inference_util import (
get_real_obs_resolution,
get_real_obs_dict)
from diffusion_policy.common.pytorch_util import dict_apply
from diffusion_policy.workspace.base_workspace import BaseWorkspace
from diffusion_policy.policy.base_image_policy import BaseImagePolicy
from diffusion_policy.common.cv2_util import get_image_transform
OmegaConf.register_new_resolver("eval", eval, replace=True)
@click.command()
@click.option('--input', '-i', required=True, help='Path to checkpoint')
@click.option('--output', '-o', required=True, help='Directory to save recording')
@click.option('--robot_ip', '-ri', required=True, help="UR5's IP address e.g. 192.168.0.204")
@click.option('--match_dataset', '-m', default=None, help='Dataset used to overlay and adjust initial condition')
@click.option('--match_episode', '-me', default=None, type=int, help='Match specific episode from the match dataset')
@click.option('--vis_camera_idx', default=0, type=int, help="Which RealSense camera to visualize.")
@click.option('--init_joints', '-j', is_flag=True, default=False, help="Whether to initialize robot joint configuration in the beginning.")
@click.option('--steps_per_inference', '-si', default=6, type=int, help="Action horizon for inference.")
@click.option('--max_duration', '-md', default=60, help='Max duration for each epoch in seconds.')
@click.option('--frequency', '-f', default=10, type=float, help="Control frequency in Hz.")
@click.option('--command_latency', '-cl', default=0.01, type=float, help="Latency between receiving SapceMouse command to executing on Robot in Sec.")
def main(input, output, robot_ip, match_dataset, match_episode,
vis_camera_idx, init_joints,
steps_per_inference, max_duration,
frequency, command_latency):
# load match_dataset
match_camera_idx = 0
episode_first_frame_map = dict()
if match_dataset is not None:
match_dir = pathlib.Path(match_dataset)
match_video_dir = match_dir.joinpath('videos')
for vid_dir in match_video_dir.glob("*/"):
episode_idx = int(vid_dir.stem)
match_video_path = vid_dir.joinpath(f'{match_camera_idx}.mp4')
if match_video_path.exists():
frames = skvideo.io.vread(
str(match_video_path), num_frames=1)
episode_first_frame_map[episode_idx] = frames[0]
print(f"Loaded initial frame for {len(episode_first_frame_map)} episodes")
# load checkpoint
ckpt_path = input
payload = torch.load(open(ckpt_path, 'rb'), pickle_module=dill)
cfg = payload['cfg']
cls = hydra.utils.get_class(cfg._target_)
workspace = cls(cfg)
workspace: BaseWorkspace
workspace.load_payload(payload, exclude_keys=None, include_keys=None)
# hacks for method-specific setup.
action_offset = 0
delta_action = False
if 'diffusion' in cfg.name:
# diffusion model
policy: BaseImagePolicy
policy = workspace.model
if cfg.training.use_ema:
policy = workspace.ema_model
device = torch.device('cuda')
policy.eval().to(device)
# set inference params
policy.num_inference_steps = 16 # DDIM inference iterations
policy.n_action_steps = policy.horizon - policy.n_obs_steps + 1
elif 'robomimic' in cfg.name:
# BCRNN model
policy: BaseImagePolicy
policy = workspace.model
device = torch.device('cuda')
policy.eval().to(device)
# BCRNN always has action horizon of 1
steps_per_inference = 1
action_offset = cfg.n_latency_steps
delta_action = cfg.task.dataset.get('delta_action', False)
elif 'ibc' in cfg.name:
policy: BaseImagePolicy
policy = workspace.model
policy.pred_n_iter = 5
policy.pred_n_samples = 4096
device = torch.device('cuda')
policy.eval().to(device)
steps_per_inference = 1
action_offset = 1
delta_action = cfg.task.dataset.get('delta_action', False)
else:
raise RuntimeError("Unsupported policy type: ", cfg.name)
# setup experiment
dt = 1/frequency
obs_res = get_real_obs_resolution(cfg.task.shape_meta)
n_obs_steps = cfg.n_obs_steps
print("n_obs_steps: ", n_obs_steps)
print("steps_per_inference:", steps_per_inference)
print("action_offset:", action_offset)
with SharedMemoryManager() as shm_manager:
with Spacemouse(shm_manager=shm_manager) as sm, RealEnv(
output_dir=output,
robot_ip=robot_ip,
frequency=frequency,
n_obs_steps=n_obs_steps,
obs_image_resolution=obs_res,
obs_float32=True,
init_joints=init_joints,
enable_multi_cam_vis=True,
record_raw_video=True,
# number of threads per camera view for video recording (H.264)
thread_per_video=3,
# video recording quality, lower is better (but slower).
video_crf=21,
shm_manager=shm_manager) as env:
cv2.setNumThreads(1)
# Should be the same as demo
# realsense exposure
env.realsense.set_exposure(exposure=120, gain=0)
# realsense white balance
env.realsense.set_white_balance(white_balance=5900)
print("Waiting for realsense")
time.sleep(1.0)
print("Warming up policy inference")
obs = env.get_obs()
with torch.no_grad():
policy.reset()
obs_dict_np = get_real_obs_dict(
env_obs=obs, shape_meta=cfg.task.shape_meta)
obs_dict = dict_apply(obs_dict_np,
lambda x: torch.from_numpy(x).unsqueeze(0).to(device))
result = policy.predict_action(obs_dict)
action = result['action'][0].detach().to('cpu').numpy()
assert action.shape[-1] == 2
del result
print('Ready!')
while True:
# ========= human control loop ==========
print("Human in control!")
state = env.get_robot_state()
target_pose = state['TargetTCPPose']
t_start = time.monotonic()
iter_idx = 0
while True:
# calculate timing
t_cycle_end = t_start + (iter_idx + 1) * dt
t_sample = t_cycle_end - command_latency
t_command_target = t_cycle_end + dt
# pump obs
obs = env.get_obs()
# visualize
episode_id = env.replay_buffer.n_episodes
vis_img = obs[f'camera_{vis_camera_idx}'][-1]
match_episode_id = episode_id
if match_episode is not None:
match_episode_id = match_episode
if match_episode_id in episode_first_frame_map:
match_img = episode_first_frame_map[match_episode_id]
ih, iw, _ = match_img.shape
oh, ow, _ = vis_img.shape
tf = get_image_transform(
input_res=(iw, ih),
output_res=(ow, oh),
bgr_to_rgb=False)
match_img = tf(match_img).astype(np.float32) / 255
vis_img = np.minimum(vis_img, match_img)
text = f'Episode: {episode_id}'
cv2.putText(
vis_img,
text,
(10,20),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.5,
thickness=1,
color=(255,255,255)
)
cv2.imshow('default', vis_img[...,::-1])
key_stroke = cv2.pollKey()
if key_stroke == ord('q'):
# Exit program
env.end_episode()
exit(0)
elif key_stroke == ord('c'):
# Exit human control loop
# hand control over to the policy
break
precise_wait(t_sample)
# get teleop command
sm_state = sm.get_motion_state_transformed()
# print(sm_state)
dpos = sm_state[:3] * (env.max_pos_speed / frequency)
drot_xyz = sm_state[3:] * (env.max_rot_speed / frequency)
if not sm.is_button_pressed(0):
# translation mode
drot_xyz[:] = 0
else:
dpos[:] = 0
if not sm.is_button_pressed(1):
# 2D translation mode
dpos[2] = 0
drot = st.Rotation.from_euler('xyz', drot_xyz)
target_pose[:3] += dpos
target_pose[3:] = (drot * st.Rotation.from_rotvec(
target_pose[3:])).as_rotvec()
# clip target pose
target_pose[:2] = np.clip(target_pose[:2], [0.25, -0.45], [0.77, 0.40])
# execute teleop command
env.exec_actions(
actions=[target_pose],
timestamps=[t_command_target-time.monotonic()+time.time()])
precise_wait(t_cycle_end)
iter_idx += 1
# ========== policy control loop ==============
try:
# start episode
policy.reset()
start_delay = 1.0
eval_t_start = time.time() + start_delay
t_start = time.monotonic() + start_delay
env.start_episode(eval_t_start)
# wait for 1/30 sec to get the closest frame actually
# reduces overall latency
frame_latency = 1/30
precise_wait(eval_t_start - frame_latency, time_func=time.time)
print("Started!")
iter_idx = 0
term_area_start_timestamp = float('inf')
perv_target_pose = None
while True:
# calculate timing
t_cycle_end = t_start + (iter_idx + steps_per_inference) * dt
# get obs
print('get_obs')
obs = env.get_obs()
obs_timestamps = obs['timestamp']
print(f'Obs latency {time.time() - obs_timestamps[-1]}')
# run inference
with torch.no_grad():
s = time.time()
obs_dict_np = get_real_obs_dict(
env_obs=obs, shape_meta=cfg.task.shape_meta)
obs_dict = dict_apply(obs_dict_np,
lambda x: torch.from_numpy(x).unsqueeze(0).to(device))
result = policy.predict_action(obs_dict)
# this action starts from the first obs step
action = result['action'][0].detach().to('cpu').numpy()
print('Inference latency:', time.time() - s)
# convert policy action to env actions
if delta_action:
assert len(action) == 1
if perv_target_pose is None:
perv_target_pose = obs['robot_eef_pose'][-1]
this_target_pose = perv_target_pose.copy()
this_target_pose[[0,1]] += action[-1]
perv_target_pose = this_target_pose
this_target_poses = np.expand_dims(this_target_pose, axis=0)
else:
this_target_poses = np.zeros((len(action), len(target_pose)), dtype=np.float64)
this_target_poses[:] = target_pose
this_target_poses[:,[0,1]] = action
# deal with timing
# the same step actions are always the target for
action_timestamps = (np.arange(len(action), dtype=np.float64) + action_offset
) * dt + obs_timestamps[-1]
action_exec_latency = 0.01
curr_time = time.time()
is_new = action_timestamps > (curr_time + action_exec_latency)
if np.sum(is_new) == 0:
# exceeded time budget, still do something
this_target_poses = this_target_poses[[-1]]
# schedule on next available step
next_step_idx = int(np.ceil((curr_time - eval_t_start) / dt))
action_timestamp = eval_t_start + (next_step_idx) * dt
print('Over budget', action_timestamp - curr_time)
action_timestamps = np.array([action_timestamp])
else:
this_target_poses = this_target_poses[is_new]
action_timestamps = action_timestamps[is_new]
# clip actions
this_target_poses[:,:2] = np.clip(
this_target_poses[:,:2], [0.25, -0.45], [0.77, 0.40])
# execute actions
env.exec_actions(
actions=this_target_poses,
timestamps=action_timestamps
)
print(f"Submitted {len(this_target_poses)} steps of actions.")
# visualize
episode_id = env.replay_buffer.n_episodes
vis_img = obs[f'camera_{vis_camera_idx}'][-1]
text = 'Episode: {}, Time: {:.1f}'.format(
episode_id, time.monotonic() - t_start
)
cv2.putText(
vis_img,
text,
(10,20),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.5,
thickness=1,
color=(255,255,255)
)
cv2.imshow('default', vis_img[...,::-1])
key_stroke = cv2.pollKey()
if key_stroke == ord('s'):
# Stop episode
# Hand control back to human
env.end_episode()
print('Stopped.')
break
# auto termination
terminate = False
if time.monotonic() - t_start > max_duration:
terminate = True
print('Terminated by the timeout!')
term_pose = np.array([ 3.40948500e-01, 2.17721816e-01, 4.59076878e-02, 2.22014183e+00, -2.22184883e+00, -4.07186655e-04])
curr_pose = obs['robot_eef_pose'][-1]
dist = np.linalg.norm((curr_pose - term_pose)[:2], axis=-1)
if dist < 0.03:
# in termination area
curr_timestamp = obs['timestamp'][-1]
if term_area_start_timestamp > curr_timestamp:
term_area_start_timestamp = curr_timestamp
else:
term_area_time = curr_timestamp - term_area_start_timestamp
if term_area_time > 0.5:
terminate = True
print('Terminated by the policy!')
else:
# out of the area
term_area_start_timestamp = float('inf')
if terminate:
env.end_episode()
break
# wait for execution
precise_wait(t_cycle_end - frame_latency)
iter_idx += steps_per_inference
except KeyboardInterrupt:
print("Interrupted!")
# stop robot.
env.end_episode()
print("Stopped.")
# %%
if __name__ == '__main__':
main()