243 lines
8.7 KiB
Python
243 lines
8.7 KiB
Python
from typing import Union
|
|
import logging
|
|
import torch
|
|
import torch.nn as nn
|
|
import einops
|
|
from einops.layers.torch import Rearrange
|
|
|
|
from diffusion_policy.model.diffusion.conv1d_components import (
|
|
Downsample1d, Upsample1d, Conv1dBlock)
|
|
from diffusion_policy.model.diffusion.positional_embedding import SinusoidalPosEmb
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class ConditionalResidualBlock1D(nn.Module):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
cond_dim,
|
|
kernel_size=3,
|
|
n_groups=8,
|
|
cond_predict_scale=False):
|
|
super().__init__()
|
|
|
|
self.blocks = nn.ModuleList([
|
|
Conv1dBlock(in_channels, out_channels, kernel_size, n_groups=n_groups),
|
|
Conv1dBlock(out_channels, out_channels, kernel_size, n_groups=n_groups),
|
|
])
|
|
|
|
# FiLM modulation https://arxiv.org/abs/1709.07871
|
|
# predicts per-channel scale and bias
|
|
cond_channels = out_channels
|
|
if cond_predict_scale:
|
|
cond_channels = out_channels * 2
|
|
self.cond_predict_scale = cond_predict_scale
|
|
self.out_channels = out_channels
|
|
self.cond_encoder = nn.Sequential(
|
|
nn.Mish(),
|
|
nn.Linear(cond_dim, cond_channels),
|
|
Rearrange('batch t -> batch t 1'),
|
|
)
|
|
|
|
# make sure dimensions compatible
|
|
self.residual_conv = nn.Conv1d(in_channels, out_channels, 1) \
|
|
if in_channels != out_channels else nn.Identity()
|
|
|
|
def forward(self, x, cond):
|
|
'''
|
|
x : [ batch_size x in_channels x horizon ]
|
|
cond : [ batch_size x cond_dim]
|
|
|
|
returns:
|
|
out : [ batch_size x out_channels x horizon ]
|
|
'''
|
|
out = self.blocks[0](x)
|
|
embed = self.cond_encoder(cond)
|
|
if self.cond_predict_scale:
|
|
embed = embed.reshape(
|
|
embed.shape[0], 2, self.out_channels, 1)
|
|
scale = embed[:,0,...]
|
|
bias = embed[:,1,...]
|
|
out = scale * out + bias
|
|
else:
|
|
out = out + embed
|
|
out = self.blocks[1](out)
|
|
out = out + self.residual_conv(x)
|
|
return out
|
|
|
|
|
|
class ConditionalUnet1D(nn.Module):
|
|
def __init__(self,
|
|
input_dim,
|
|
local_cond_dim=None,
|
|
global_cond_dim=None,
|
|
diffusion_step_embed_dim=256,
|
|
down_dims=[256,512,1024],
|
|
kernel_size=3,
|
|
n_groups=8,
|
|
cond_predict_scale=False
|
|
):
|
|
super().__init__()
|
|
all_dims = [input_dim] + list(down_dims)
|
|
start_dim = down_dims[0]
|
|
|
|
dsed = diffusion_step_embed_dim
|
|
diffusion_step_encoder = nn.Sequential(
|
|
SinusoidalPosEmb(dsed),
|
|
nn.Linear(dsed, dsed * 4),
|
|
nn.Mish(),
|
|
nn.Linear(dsed * 4, dsed),
|
|
)
|
|
cond_dim = dsed
|
|
if global_cond_dim is not None:
|
|
cond_dim += global_cond_dim
|
|
|
|
in_out = list(zip(all_dims[:-1], all_dims[1:]))
|
|
|
|
local_cond_encoder = None
|
|
if local_cond_dim is not None:
|
|
_, dim_out = in_out[0]
|
|
dim_in = local_cond_dim
|
|
local_cond_encoder = nn.ModuleList([
|
|
# down encoder
|
|
ConditionalResidualBlock1D(
|
|
dim_in, dim_out, cond_dim=cond_dim,
|
|
kernel_size=kernel_size, n_groups=n_groups,
|
|
cond_predict_scale=cond_predict_scale),
|
|
# up encoder
|
|
ConditionalResidualBlock1D(
|
|
dim_in, dim_out, cond_dim=cond_dim,
|
|
kernel_size=kernel_size, n_groups=n_groups,
|
|
cond_predict_scale=cond_predict_scale)
|
|
])
|
|
|
|
mid_dim = all_dims[-1]
|
|
self.mid_modules = nn.ModuleList([
|
|
ConditionalResidualBlock1D(
|
|
mid_dim, mid_dim, cond_dim=cond_dim,
|
|
kernel_size=kernel_size, n_groups=n_groups,
|
|
cond_predict_scale=cond_predict_scale
|
|
),
|
|
ConditionalResidualBlock1D(
|
|
mid_dim, mid_dim, cond_dim=cond_dim,
|
|
kernel_size=kernel_size, n_groups=n_groups,
|
|
cond_predict_scale=cond_predict_scale
|
|
),
|
|
])
|
|
|
|
down_modules = nn.ModuleList([])
|
|
for ind, (dim_in, dim_out) in enumerate(in_out):
|
|
is_last = ind >= (len(in_out) - 1)
|
|
down_modules.append(nn.ModuleList([
|
|
ConditionalResidualBlock1D(
|
|
dim_in, dim_out, cond_dim=cond_dim,
|
|
kernel_size=kernel_size, n_groups=n_groups,
|
|
cond_predict_scale=cond_predict_scale),
|
|
ConditionalResidualBlock1D(
|
|
dim_out, dim_out, cond_dim=cond_dim,
|
|
kernel_size=kernel_size, n_groups=n_groups,
|
|
cond_predict_scale=cond_predict_scale),
|
|
Downsample1d(dim_out) if not is_last else nn.Identity()
|
|
]))
|
|
|
|
up_modules = nn.ModuleList([])
|
|
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
|
|
is_last = ind >= (len(in_out) - 1)
|
|
up_modules.append(nn.ModuleList([
|
|
ConditionalResidualBlock1D(
|
|
dim_out*2, dim_in, cond_dim=cond_dim,
|
|
kernel_size=kernel_size, n_groups=n_groups,
|
|
cond_predict_scale=cond_predict_scale),
|
|
ConditionalResidualBlock1D(
|
|
dim_in, dim_in, cond_dim=cond_dim,
|
|
kernel_size=kernel_size, n_groups=n_groups,
|
|
cond_predict_scale=cond_predict_scale),
|
|
Upsample1d(dim_in) if not is_last else nn.Identity()
|
|
]))
|
|
|
|
final_conv = nn.Sequential(
|
|
Conv1dBlock(start_dim, start_dim, kernel_size=kernel_size),
|
|
nn.Conv1d(start_dim, input_dim, 1),
|
|
)
|
|
|
|
self.diffusion_step_encoder = diffusion_step_encoder
|
|
self.local_cond_encoder = local_cond_encoder
|
|
self.up_modules = up_modules
|
|
self.down_modules = down_modules
|
|
self.final_conv = final_conv
|
|
|
|
logger.info(
|
|
"number of parameters: %e", sum(p.numel() for p in self.parameters())
|
|
)
|
|
|
|
def forward(self,
|
|
sample: torch.Tensor,
|
|
timestep: Union[torch.Tensor, float, int],
|
|
local_cond=None, global_cond=None, **kwargs):
|
|
"""
|
|
x: (B,T,input_dim)
|
|
timestep: (B,) or int, diffusion step
|
|
local_cond: (B,T,local_cond_dim)
|
|
global_cond: (B,global_cond_dim)
|
|
output: (B,T,input_dim)
|
|
"""
|
|
sample = einops.rearrange(sample, 'b h t -> b t h')
|
|
|
|
# 1. time
|
|
timesteps = timestep
|
|
if not torch.is_tensor(timesteps):
|
|
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
|
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
|
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
|
timesteps = timesteps[None].to(sample.device)
|
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
timesteps = timesteps.expand(sample.shape[0])
|
|
|
|
global_feature = self.diffusion_step_encoder(timesteps)
|
|
|
|
if global_cond is not None:
|
|
global_feature = torch.cat([
|
|
global_feature, global_cond
|
|
], axis=-1)
|
|
|
|
# encode local features
|
|
h_local = list()
|
|
if local_cond is not None:
|
|
local_cond = einops.rearrange(local_cond, 'b h t -> b t h')
|
|
resnet, resnet2 = self.local_cond_encoder
|
|
x = resnet(local_cond, global_feature)
|
|
h_local.append(x)
|
|
x = resnet2(local_cond, global_feature)
|
|
h_local.append(x)
|
|
|
|
x = sample
|
|
h = []
|
|
for idx, (resnet, resnet2, downsample) in enumerate(self.down_modules):
|
|
x = resnet(x, global_feature)
|
|
if idx == 0 and len(h_local) > 0:
|
|
x = x + h_local[0]
|
|
x = resnet2(x, global_feature)
|
|
h.append(x)
|
|
x = downsample(x)
|
|
|
|
for mid_module in self.mid_modules:
|
|
x = mid_module(x, global_feature)
|
|
|
|
for idx, (resnet, resnet2, upsample) in enumerate(self.up_modules):
|
|
x = torch.cat((x, h.pop()), dim=1)
|
|
x = resnet(x, global_feature)
|
|
# The correct condition should be:
|
|
# if idx == (len(self.up_modules)-1) and len(h_local) > 0:
|
|
# However this change will break compatibility with published checkpoints.
|
|
# Therefore it is left as a comment.
|
|
if idx == len(self.up_modules) and len(h_local) > 0:
|
|
x = x + h_local[1]
|
|
x = resnet2(x, global_feature)
|
|
x = upsample(x)
|
|
|
|
x = self.final_conv(x)
|
|
|
|
x = einops.rearrange(x, 'b t h -> b h t')
|
|
return x
|
|
|