function for combining experiences
This commit is contained in:
parent
d0ffc6bfed
commit
27ac05efb0
@ -6,7 +6,7 @@ from random import random
|
||||
from contextlib import nullcontext
|
||||
from collections import namedtuple
|
||||
from functools import partial
|
||||
from dataclasses import dataclass
|
||||
from dataclasses import dataclass, asdict
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
@ -14,6 +14,7 @@ from torch.nested import nested_tensor
|
||||
from torch.distributions import Normal
|
||||
from torch.nn import Module, ModuleList, Embedding, Parameter, Sequential, Linear, RMSNorm, Identity
|
||||
from torch import nn, cat, stack, arange, tensor, Tensor, is_tensor, zeros, ones, randint, rand, randn, randn_like, empty, full, linspace, arange
|
||||
from torch.utils._pytree import tree_flatten, tree_unflatten
|
||||
|
||||
import torchvision
|
||||
from torchvision.models import VGG16_Weights
|
||||
@ -82,6 +83,42 @@ class Experience:
|
||||
agent_index: int = 0
|
||||
is_from_world_model: bool = True
|
||||
|
||||
def combine_experiences(
|
||||
exps: list[Experiences]
|
||||
) -> Experience:
|
||||
|
||||
assert len(exps) > 0
|
||||
exps_dict = [asdict(exp) for exp in exps]
|
||||
|
||||
values, tree_specs = zip(*[tree_flatten(exp_dict) for exp_dict in exps_dict])
|
||||
|
||||
tree_spec = first(tree_specs)
|
||||
|
||||
all_field_values = list(zip(*values))
|
||||
|
||||
# an assert to make sure all fields are either all tensors, or a single matching value (for step size, agent index etc) - can change this later
|
||||
|
||||
assert all([
|
||||
all([is_tensor(v) for v in field_values]) or len(set(field_values)) == 1
|
||||
for field_values in all_field_values
|
||||
])
|
||||
|
||||
concatted = []
|
||||
|
||||
for field_values in all_field_values:
|
||||
if is_tensor(first(field_values)):
|
||||
new_field_value = cat(field_values)
|
||||
else:
|
||||
new_field_value = first(list(set(field_values)))
|
||||
|
||||
concatted.append(new_field_value)
|
||||
|
||||
# return experience
|
||||
|
||||
concat_exp_dict = tree_unflatten(concatted, tree_spec)
|
||||
|
||||
return Experience(**concat_exp_dict)
|
||||
|
||||
# helpers
|
||||
|
||||
def exists(v):
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "dreamer4"
|
||||
version = "0.0.66"
|
||||
version = "0.0.67"
|
||||
description = "Dreamer 4"
|
||||
authors = [
|
||||
{ name = "Phil Wang", email = "lucidrains@gmail.com" }
|
||||
|
||||
@ -637,11 +637,16 @@ def test_online_rl(
|
||||
)
|
||||
|
||||
from dreamer4.mocks import MockEnv
|
||||
from dreamer4.dreamer4 import combine_experiences
|
||||
|
||||
mock_env = MockEnv((256, 256), vectorized = vectorized, num_envs = 4)
|
||||
|
||||
one_experience = world_model_and_policy.interact_with_env(mock_env, max_timesteps = 16, env_is_vectorized = vectorized)
|
||||
another_experience = world_model_and_policy.interact_with_env(mock_env, max_timesteps = 16, env_is_vectorized = vectorized)
|
||||
|
||||
actor_loss, critic_loss = world_model_and_policy.learn_from_experience(one_experience, use_signed_advantage = use_signed_advantage)
|
||||
combined_experience = combine_experiences([one_experience, another_experience])
|
||||
|
||||
actor_loss, critic_loss = world_model_and_policy.learn_from_experience(combined_experience, use_signed_advantage = use_signed_advantage)
|
||||
|
||||
actor_loss.backward()
|
||||
critic_loss.backward()
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user