x-space and v-space prediction in dynamics model

This commit is contained in:
lucidrains 2025-10-02 08:36:00 -07:00
parent 8b66b703e0
commit 49082d8629
2 changed files with 47 additions and 7 deletions

View File

@ -509,6 +509,7 @@ class DynamicsModel(Module):
num_spatial_tokens = 32, # latents were projected into spatial tokens, and presumably pooled back for the final prediction (or one special one does the x-prediction)
num_register_tokens = 8, # they claim register tokens led to better temporal consistency
depth = 4,
pred_orig_latent = True, # directly predicting the original x0 data yield better results, rather than velocity (x-space vs v-space)
time_block_every = 4, # every 4th block is time
attn_kwargs: dict = dict(
dim_head = 64,
@ -532,9 +533,14 @@ class DynamicsModel(Module):
assert divisible_by(dim, 2)
dim_half = dim // 2
self.num_signal_levels = num_signal_levels
self.num_step_sizes = num_step_sizes
self.signal_levels_embed = nn.Embedding(num_signal_levels, dim_half)
self.step_sizes_embed = nn.Embedding(num_step_sizes, dim_half)
self.pred_orig_latent = pred_orig_latent
# they sum all the actions into a single token
self.action_learned_embed = Parameter(torch.randn(dim) * 1e-2)
@ -573,6 +579,32 @@ class DynamicsModel(Module):
step_sizes = None # (b t)
):
assert not (exists(signal_levels) ^ exists(step_sizes))
flow_matching = exists(signal_levels)
# flow matching if `signal_levels` passed in
if flow_matching:
noise = torch.randn_like(latents)
interp = rearrange(signal_levels.float() / self.num_signal_levels, 'b t -> b t 1')
orig_latents = latents
latents = noise.lerp(latents, interp)
# allow for original velocity pred
# x-space as in paper is in else clause
if not self.pred_orig_latent:
pred_target = flow = latents - noise
else:
pred_target = latents
# latents to spatial tokens
space_tokens = self.latents_to_spatial_tokens(latents)
# pack to tokens
@ -584,14 +616,13 @@ class DynamicsModel(Module):
# determine signal + step size embed for their diffusion forcing + shortcut
assert not (exists(signal_levels) ^ exists(step_sizes))
if exists(signal_levels):
signal_embed = self.signal_levels_embed(signal_levels)
step_size_embed = self.step_sizes_embed(step_sizes)
flow_token = cat((signal_embed, step_size_embed), dim = -1)
flow_token = rearrange(flow_token, 'b t d -> b t d')
else:
flow_token = registers[..., 0:0, :]
@ -619,7 +650,12 @@ class DynamicsModel(Module):
pooled = reduce(space_tokens, 'b t s d -> b t d', 'mean')
return self.to_pred(pooled)
pred = self.to_pred(pooled)
if not flow_matching:
return pred
return F.mse_loss(pred, pred_target)
# dreamer

View File

@ -1,7 +1,11 @@
import pytest
param = pytest.mark.parametrize
import torch
def test_e2e():
@param('pred_orig_latent', (False, True))
def test_e2e(
pred_orig_latent
):
from dreamer4.dreamer4 import VideoTokenizer, DynamicsModel
tokenizer = VideoTokenizer(512, dim_latent = 32, patch_size = 32)
@ -13,10 +17,10 @@ def test_e2e():
latents = tokenizer(x, return_latents = True)
assert latents.shape[-1] == 32
dynamics = DynamicsModel(512, dim_latent = 32, num_signal_levels = 500, num_step_sizes = 32)
dynamics = DynamicsModel(512, dim_latent = 32, num_signal_levels = 500, num_step_sizes = 32, pred_orig_latent = pred_orig_latent)
signal_levels = torch.randint(0, 500, (2, 4))
step_sizes = torch.randint(0, 32, (2, 4))
pred = dynamics(latents, signal_levels = signal_levels, step_sizes = step_sizes)
assert pred.shape == latents.shape
flow_loss = dynamics(latents, signal_levels = signal_levels, step_sizes = step_sizes)
assert flow_loss.numel() == 1