x-space and v-space prediction in dynamics model
This commit is contained in:
parent
8b66b703e0
commit
49082d8629
@ -509,6 +509,7 @@ class DynamicsModel(Module):
|
||||
num_spatial_tokens = 32, # latents were projected into spatial tokens, and presumably pooled back for the final prediction (or one special one does the x-prediction)
|
||||
num_register_tokens = 8, # they claim register tokens led to better temporal consistency
|
||||
depth = 4,
|
||||
pred_orig_latent = True, # directly predicting the original x0 data yield better results, rather than velocity (x-space vs v-space)
|
||||
time_block_every = 4, # every 4th block is time
|
||||
attn_kwargs: dict = dict(
|
||||
dim_head = 64,
|
||||
@ -532,9 +533,14 @@ class DynamicsModel(Module):
|
||||
assert divisible_by(dim, 2)
|
||||
dim_half = dim // 2
|
||||
|
||||
self.num_signal_levels = num_signal_levels
|
||||
self.num_step_sizes = num_step_sizes
|
||||
|
||||
self.signal_levels_embed = nn.Embedding(num_signal_levels, dim_half)
|
||||
self.step_sizes_embed = nn.Embedding(num_step_sizes, dim_half)
|
||||
|
||||
self.pred_orig_latent = pred_orig_latent
|
||||
|
||||
# they sum all the actions into a single token
|
||||
|
||||
self.action_learned_embed = Parameter(torch.randn(dim) * 1e-2)
|
||||
@ -573,6 +579,32 @@ class DynamicsModel(Module):
|
||||
step_sizes = None # (b t)
|
||||
):
|
||||
|
||||
assert not (exists(signal_levels) ^ exists(step_sizes))
|
||||
|
||||
flow_matching = exists(signal_levels)
|
||||
|
||||
# flow matching if `signal_levels` passed in
|
||||
|
||||
if flow_matching:
|
||||
|
||||
noise = torch.randn_like(latents)
|
||||
|
||||
interp = rearrange(signal_levels.float() / self.num_signal_levels, 'b t -> b t 1')
|
||||
|
||||
orig_latents = latents
|
||||
|
||||
latents = noise.lerp(latents, interp)
|
||||
|
||||
# allow for original velocity pred
|
||||
# x-space as in paper is in else clause
|
||||
|
||||
if not self.pred_orig_latent:
|
||||
pred_target = flow = latents - noise
|
||||
else:
|
||||
pred_target = latents
|
||||
|
||||
# latents to spatial tokens
|
||||
|
||||
space_tokens = self.latents_to_spatial_tokens(latents)
|
||||
|
||||
# pack to tokens
|
||||
@ -584,14 +616,13 @@ class DynamicsModel(Module):
|
||||
|
||||
# determine signal + step size embed for their diffusion forcing + shortcut
|
||||
|
||||
assert not (exists(signal_levels) ^ exists(step_sizes))
|
||||
|
||||
if exists(signal_levels):
|
||||
signal_embed = self.signal_levels_embed(signal_levels)
|
||||
step_size_embed = self.step_sizes_embed(step_sizes)
|
||||
|
||||
flow_token = cat((signal_embed, step_size_embed), dim = -1)
|
||||
flow_token = rearrange(flow_token, 'b t d -> b t d')
|
||||
|
||||
else:
|
||||
flow_token = registers[..., 0:0, :]
|
||||
|
||||
@ -619,7 +650,12 @@ class DynamicsModel(Module):
|
||||
|
||||
pooled = reduce(space_tokens, 'b t s d -> b t d', 'mean')
|
||||
|
||||
return self.to_pred(pooled)
|
||||
pred = self.to_pred(pooled)
|
||||
|
||||
if not flow_matching:
|
||||
return pred
|
||||
|
||||
return F.mse_loss(pred, pred_target)
|
||||
|
||||
# dreamer
|
||||
|
||||
|
||||
@ -1,7 +1,11 @@
|
||||
import pytest
|
||||
param = pytest.mark.parametrize
|
||||
import torch
|
||||
|
||||
def test_e2e():
|
||||
@param('pred_orig_latent', (False, True))
|
||||
def test_e2e(
|
||||
pred_orig_latent
|
||||
):
|
||||
from dreamer4.dreamer4 import VideoTokenizer, DynamicsModel
|
||||
|
||||
tokenizer = VideoTokenizer(512, dim_latent = 32, patch_size = 32)
|
||||
@ -13,10 +17,10 @@ def test_e2e():
|
||||
latents = tokenizer(x, return_latents = True)
|
||||
assert latents.shape[-1] == 32
|
||||
|
||||
dynamics = DynamicsModel(512, dim_latent = 32, num_signal_levels = 500, num_step_sizes = 32)
|
||||
dynamics = DynamicsModel(512, dim_latent = 32, num_signal_levels = 500, num_step_sizes = 32, pred_orig_latent = pred_orig_latent)
|
||||
|
||||
signal_levels = torch.randint(0, 500, (2, 4))
|
||||
step_sizes = torch.randint(0, 32, (2, 4))
|
||||
|
||||
pred = dynamics(latents, signal_levels = signal_levels, step_sizes = step_sizes)
|
||||
assert pred.shape == latents.shape
|
||||
flow_loss = dynamics(latents, signal_levels = signal_levels, step_sizes = step_sizes)
|
||||
assert flow_loss.numel() == 1
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user