use the agent embeds off the stored experience if available
This commit is contained in:
parent
d476fa7b14
commit
903c43b770
@ -77,7 +77,7 @@ class Experience:
|
||||
latents: Tensor
|
||||
video: Tensor | None = None
|
||||
proprio: Tensor | None = None
|
||||
agent_embed: Tensor | None = None,
|
||||
agent_embed: Tensor | None = None
|
||||
rewards: Tensor | None = None
|
||||
actions: tuple[Tensor, Tensor] | None = None
|
||||
log_probs: tuple[Tensor, Tensor] | None = None
|
||||
@ -2295,6 +2295,7 @@ class DynamicsWorldModel(Module):
|
||||
old_log_probs = experience.log_probs
|
||||
old_values = experience.values
|
||||
rewards = experience.rewards
|
||||
agent_embeds = experience.agent_embed
|
||||
|
||||
step_size = experience.step_size
|
||||
agent_index = experience.agent_index
|
||||
@ -2374,32 +2375,38 @@ class DynamicsWorldModel(Module):
|
||||
advantage = F.layer_norm(advantage, advantage.shape, eps = eps)
|
||||
|
||||
# replay for the action logits and values
|
||||
# but only do so if fine tuning the entire world model for RL
|
||||
|
||||
discrete_actions, continuous_actions = actions
|
||||
|
||||
with world_model_forward_context():
|
||||
_, (agent_embed, _) = self.forward(
|
||||
latents = latents,
|
||||
signal_levels = self.max_steps - 1,
|
||||
step_sizes = step_size,
|
||||
rewards = rewards,
|
||||
discrete_actions = discrete_actions,
|
||||
continuous_actions = continuous_actions,
|
||||
latent_is_noised = True,
|
||||
return_pred_only = True,
|
||||
return_intermediates = True
|
||||
)
|
||||
if (
|
||||
not only_learn_policy_value_heads or
|
||||
not exists(agent_embeds)
|
||||
):
|
||||
|
||||
agent_embed = agent_embed[..., agent_index, :]
|
||||
with world_model_forward_context():
|
||||
_, (agent_embeds, _) = self.forward(
|
||||
latents = latents,
|
||||
signal_levels = self.max_steps - 1,
|
||||
step_sizes = step_size,
|
||||
rewards = rewards,
|
||||
discrete_actions = discrete_actions,
|
||||
continuous_actions = continuous_actions,
|
||||
latent_is_noised = True,
|
||||
return_pred_only = True,
|
||||
return_intermediates = True
|
||||
)
|
||||
|
||||
agent_embeds = agent_embeds[..., agent_index, :]
|
||||
|
||||
# maybe detach agent embed
|
||||
|
||||
if only_learn_policy_value_heads:
|
||||
agent_embed = agent_embed.detach()
|
||||
agent_embeds = agent_embeds.detach()
|
||||
|
||||
# ppo
|
||||
|
||||
policy_embed = self.policy_head(agent_embed)
|
||||
policy_embed = self.policy_head(agent_embeds)
|
||||
|
||||
log_probs, entropies = self.action_embedder.log_probs(policy_embed, pred_head_index = 0, discrete_targets = discrete_actions, continuous_targets = continuous_actions, return_entropies = True)
|
||||
|
||||
@ -2448,7 +2455,7 @@ class DynamicsWorldModel(Module):
|
||||
|
||||
# value loss
|
||||
|
||||
value_bins = self.value_head(agent_embed)
|
||||
value_bins = self.value_head(agent_embeds)
|
||||
values = self.reward_encoder.bins_to_scalar_value(value_bins)
|
||||
|
||||
clipped_values = old_values + (values - old_values).clamp(-self.value_clip, self.value_clip)
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "dreamer4"
|
||||
version = "0.0.85"
|
||||
version = "0.0.87"
|
||||
description = "Dreamer 4"
|
||||
authors = [
|
||||
{ name = "Phil Wang", email = "lucidrains@gmail.com" }
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user