handle subset of discrete action unembedding

This commit is contained in:
lucidrains 2025-10-10 11:27:05 -07:00
parent c68942b026
commit 9230267d34
3 changed files with 51 additions and 17 deletions

View File

@ -322,10 +322,25 @@ class ActionEmbedder(Module):
self.can_unembed = can_unembed
if can_unembed:
unembed_dim = default(unembed_dim, dim)
self.discrete_action_unembed = Parameter(torch.randn(total_discrete_actions, unembed_dim) * 1e-2)
self.continuous_action_unembed = Parameter(torch.randn(num_continuous_actions, unembed_dim, 2) * 1e-2)
if not can_unembed:
return
unembed_dim = default(unembed_dim, dim)
self.discrete_action_unembed = Parameter(torch.randn(total_discrete_actions, unembed_dim) * 1e-2)
discrete_action_index = arange(total_discrete_actions)
padded_num_discrete_actions = F.pad(num_discrete_actions, (1, 0), value = 0)
exclusive_cumsum = padded_num_discrete_actions.cumsum(dim = -1)
discrete_action_mask = (
einx.greater_equal('j, i -> i j', discrete_action_index, exclusive_cumsum[:-1]) &
einx.less('j, i -> i j', discrete_action_index, exclusive_cumsum[1:])
)
self.register_buffer('discrete_action_mask', discrete_action_mask, persistent = False)
self.continuous_action_unembed = Parameter(torch.randn(num_continuous_actions, unembed_dim, 2) * 1e-2)
@property
def device(self):
@ -335,6 +350,18 @@ class ActionEmbedder(Module):
def has_actions(self):
return self.num_discrete_action_types > 0 or self.num_continuous_action_types > 0
def cast_action_types(
self,
action_types = None
):
if exists(action_types) and not is_tensor(action_types):
if isinstance(action_types, int):
action_types = (action_types,)
action_types = tensor(action_types, device = self.device)
return action_types
def unembed(
self,
embeds, # (... d)
@ -345,14 +372,22 @@ class ActionEmbedder(Module):
assert self.can_unembed, 'can only unembed for predicted discrete and continuous actions if `can_unembed = True` is set on init'
assert not exists(discrete_action_types), 'selecting subset of discrete action types to unembed not completed yet'
discrete_action_types, continuous_action_types = tuple(self.cast_action_types(t) for t in (discrete_action_types, continuous_action_types))
# discrete actions
discrete_action_logits = None
if self.num_discrete_action_types > 0:
discrete_action_logits = einsum(embeds, self.discrete_action_unembed, '... d, na d -> ... na')
discrete_action_unembed = self.discrete_action_unembed
if exists(discrete_action_types):
discrete_action_mask = self.discrete_action_mask[discrete_action_types].any(dim = 0)
discrete_action_unembed = discrete_action_unembed[discrete_action_mask]
discrete_action_logits = einsum(embeds, discrete_action_unembed, '... d, na d -> ... na')
# continuous actions
@ -385,11 +420,7 @@ class ActionEmbedder(Module):
discrete_action_types = default(discrete_action_types, self.default_discrete_action_types)
if exists(discrete_action_types) and not is_tensor(discrete_action_types):
if isinstance(discrete_action_types, int):
discrete_action_types = (discrete_action_types,)
discrete_action_types = tensor(discrete_action_types, device = self.device)
discrete_action_types = self.cast_action_types(discrete_action_types)
offsets = self.discrete_action_offsets[discrete_action_types]
@ -403,11 +434,7 @@ class ActionEmbedder(Module):
if exists(continuous_actions):
continuous_action_types = default(continuous_action_types, self.default_continuous_action_types)
if exists(continuous_action_types) and not is_tensor(continuous_action_types):
if isinstance(continuous_action_types, int):
continuous_action_types = (continuous_action_types,)
continuous_action_types = tensor(continuous_action_types, device = self.device)
continuous_action_types = self.cast_action_types(continuous_action_types)
assert continuous_action_types.shape[-1] == continuous_actions.shape[-1], 'mismatched number of continuous actions'

View File

@ -1,6 +1,6 @@
[project]
name = "dreamer4"
version = "0.0.9"
version = "0.0.10"
description = "Dreamer 4"
authors = [
{ name = "Phil Wang", email = "lucidrains@gmail.com" }

View File

@ -270,3 +270,10 @@ def test_action_embedder():
assert discrete_logits.shape == (2, 3, 8)
assert continuous_mean_log_var.shape == (2, 3, 2, 2)
# unembed subset of actions
discrete_logits, continuous_mean_log_var = embedder.unembed(action_embed, discrete_action_types = 1, continuous_action_types = 0)
assert discrete_logits.shape == (2, 3, 4)
assert continuous_mean_log_var.shape == (2, 3, 1, 2)