their latent bottleneck is tanh it seems, constraining it to -1 to 1 for flow matching in dynamics model. please open an issue if mistakened
This commit is contained in:
parent
e3cbcd94c6
commit
c18c624be6
@ -291,16 +291,29 @@ class SwiGLUFeedforward(Module):
|
||||
|
||||
class VideoTokenizer(Module):
|
||||
def __init__(
|
||||
self
|
||||
self,
|
||||
dim,
|
||||
dim_latent
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.encoded_to_latents = Sequential(
|
||||
LinearNoBias(dim, dim_latent),
|
||||
nn.Tanh(),
|
||||
)
|
||||
|
||||
self.latents_to_decoder = LinearNoBias(dim_latent, dim)
|
||||
|
||||
# dynamics model
|
||||
|
||||
class DynamicsModel(Module):
|
||||
def __init__(
|
||||
self
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# dreamer
|
||||
|
||||
class Dreamer(Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user