they replace the recurrent state-space model with a transformer, with the implication that the former does not scale
This commit is contained in:
parent
bdc7dd30a6
commit
e0dd4cfeaa
@ -0,0 +1,68 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import Module, ModuleList, RMSNorm, Identity
|
||||
from torch import cat, stack, tensor, Tensor, is_tensor
|
||||
|
||||
# helpers
|
||||
|
||||
def exists(v):
|
||||
return v is not None
|
||||
|
||||
def default(v, d):
|
||||
return v if exists(v) else d
|
||||
|
||||
# classes
|
||||
|
||||
class Attention(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_head = 64,
|
||||
heads = 8,
|
||||
pre_rmsnorm = True
|
||||
):
|
||||
super().__init__()
|
||||
self.norm = RMSNorm(dim) if pre_rmsnorm else Identity()
|
||||
|
||||
self.scale = dim_head ** -0.5
|
||||
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
|
||||
self.merge_heads = Rearrange('b h n d -> b n (h d)')
|
||||
|
||||
dim_inner = dim_head * heads
|
||||
self.to_q = LinearNoBias(dim, dim_inner)
|
||||
self.to_kv = LinearNoBias(dim, dim_inner * 2)
|
||||
self.to_out = LinearNoBias(dim_inner, dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tokens,
|
||||
kv_cache = None,
|
||||
return_kv_cache = False
|
||||
):
|
||||
tokens = self.norm(tokens)
|
||||
|
||||
q, k, v = (self.to_q(tokens), *self.to_kv(tokens).chunk(2, dim = -1))
|
||||
|
||||
q, k, v = map(self.split_heads, (q, k, v))
|
||||
|
||||
if exists(kv_cache):
|
||||
ck, cv = kv_cache
|
||||
k = cat((ck, k), dim = -2)
|
||||
v = cat((cv, v), dim = -2)
|
||||
|
||||
q = q * self.scale
|
||||
|
||||
sim = einsum(q, k, 'b h i d, b h j d -> b h i j')
|
||||
|
||||
attn = sim.softmax(dim = -1)
|
||||
|
||||
out = einsum(attn, v, 'b h i j, b h j d -> b h i d')
|
||||
|
||||
out = self.merge_heads(out)
|
||||
|
||||
out = self.to_out(out)
|
||||
|
||||
if not return_kv_cache:
|
||||
return out
|
||||
|
||||
return out, stack((k, v))
|
||||
Loading…
x
Reference in New Issue
Block a user