This commit is contained in:
parent
51e0852604
commit
e23a5294ec
@ -528,11 +528,11 @@ class DynamicsModel(Module):
|
||||
dim_latent,
|
||||
num_signal_levels = 500,
|
||||
num_step_sizes = 32,
|
||||
num_spatial_tokens = 32, # latents were projected into spatial tokens, and presumably pooled back for the final prediction (or one special one does the x-prediction)
|
||||
num_register_tokens = 8, # they claim register tokens led to better temporal consistency
|
||||
num_spatial_tokens = 32, # latents were projected into spatial tokens, and presumably pooled back for the final prediction (or one special one does the x-prediction)
|
||||
num_register_tokens = 8, # they claim register tokens led to better temporal consistency
|
||||
depth = 4,
|
||||
pred_orig_latent = True, # directly predicting the original x0 data yield better results, rather than velocity (x-space vs v-space)
|
||||
time_block_every = 4, # every 4th block is time
|
||||
pred_is_clean_latents = True, # directly predicting the original x0 data yield better results, rather than velocity (x-space vs v-space)
|
||||
time_block_every = 4, # every 4th block is time
|
||||
attn_kwargs: dict = dict(
|
||||
dim_head = 64,
|
||||
heads = 8,
|
||||
@ -561,7 +561,7 @@ class DynamicsModel(Module):
|
||||
self.signal_levels_embed = nn.Embedding(num_signal_levels, dim_half)
|
||||
self.step_sizes_embed = nn.Embedding(num_step_sizes, dim_half)
|
||||
|
||||
self.pred_orig_latent = pred_orig_latent
|
||||
self.pred_is_clean_latents = pred_is_clean_latents
|
||||
|
||||
# they sum all the actions into a single token
|
||||
|
||||
@ -611,19 +611,15 @@ class DynamicsModel(Module):
|
||||
|
||||
noise = torch.randn_like(latents)
|
||||
|
||||
interp = rearrange(signal_levels.float() / self.num_signal_levels, 'b t -> b t 1')
|
||||
times = signal_levels.float() / self.num_signal_levels
|
||||
|
||||
orig_latents = latents
|
||||
times = rearrange(times, 'b t -> b t 1')
|
||||
|
||||
latents = noise.lerp(latents, interp)
|
||||
flow = latents - noise
|
||||
|
||||
# allow for original velocity pred
|
||||
# x-space as in paper is in else clause
|
||||
latents = noise.lerp(latents, times)
|
||||
|
||||
if not self.pred_orig_latent:
|
||||
pred_target = flow = latents - noise
|
||||
else:
|
||||
pred_target = latents
|
||||
noised_latents = latents
|
||||
|
||||
# latents to spatial tokens
|
||||
|
||||
@ -677,7 +673,15 @@ class DynamicsModel(Module):
|
||||
if not flow_matching:
|
||||
return pred
|
||||
|
||||
return F.mse_loss(pred, pred_target)
|
||||
# x-space vs v-space
|
||||
|
||||
if self.pred_is_clean_latents:
|
||||
denoised_latent = pred
|
||||
pred_flow = (denoised_latent - noised_latents) / (1. - times)
|
||||
else:
|
||||
pred_flow = pred
|
||||
|
||||
return F.mse_loss(pred_flow, flow)
|
||||
|
||||
# dreamer
|
||||
|
||||
|
||||
@ -2,9 +2,9 @@ import pytest
|
||||
param = pytest.mark.parametrize
|
||||
import torch
|
||||
|
||||
@param('pred_orig_latent', (False, True))
|
||||
@param('pred_is_clean_latents', (False, True))
|
||||
def test_e2e(
|
||||
pred_orig_latent
|
||||
pred_is_clean_latents
|
||||
):
|
||||
from dreamer4.dreamer4 import VideoTokenizer, DynamicsModel
|
||||
|
||||
@ -17,7 +17,7 @@ def test_e2e(
|
||||
latents = tokenizer(x, return_latents = True)
|
||||
assert latents.shape[-1] == 32
|
||||
|
||||
dynamics = DynamicsModel(512, dim_latent = 32, num_signal_levels = 500, num_step_sizes = 32, pred_orig_latent = pred_orig_latent)
|
||||
dynamics = DynamicsModel(512, dim_latent = 32, num_signal_levels = 500, num_step_sizes = 32, pred_is_clean_latents = pred_is_clean_latents)
|
||||
|
||||
signal_levels = torch.randint(0, 500, (2, 4))
|
||||
step_sizes = torch.randint(0, 32, (2, 4))
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user