This commit is contained in:
parent
51e0852604
commit
e23a5294ec
@ -531,7 +531,7 @@ class DynamicsModel(Module):
|
|||||||
num_spatial_tokens = 32, # latents were projected into spatial tokens, and presumably pooled back for the final prediction (or one special one does the x-prediction)
|
num_spatial_tokens = 32, # latents were projected into spatial tokens, and presumably pooled back for the final prediction (or one special one does the x-prediction)
|
||||||
num_register_tokens = 8, # they claim register tokens led to better temporal consistency
|
num_register_tokens = 8, # they claim register tokens led to better temporal consistency
|
||||||
depth = 4,
|
depth = 4,
|
||||||
pred_orig_latent = True, # directly predicting the original x0 data yield better results, rather than velocity (x-space vs v-space)
|
pred_is_clean_latents = True, # directly predicting the original x0 data yield better results, rather than velocity (x-space vs v-space)
|
||||||
time_block_every = 4, # every 4th block is time
|
time_block_every = 4, # every 4th block is time
|
||||||
attn_kwargs: dict = dict(
|
attn_kwargs: dict = dict(
|
||||||
dim_head = 64,
|
dim_head = 64,
|
||||||
@ -561,7 +561,7 @@ class DynamicsModel(Module):
|
|||||||
self.signal_levels_embed = nn.Embedding(num_signal_levels, dim_half)
|
self.signal_levels_embed = nn.Embedding(num_signal_levels, dim_half)
|
||||||
self.step_sizes_embed = nn.Embedding(num_step_sizes, dim_half)
|
self.step_sizes_embed = nn.Embedding(num_step_sizes, dim_half)
|
||||||
|
|
||||||
self.pred_orig_latent = pred_orig_latent
|
self.pred_is_clean_latents = pred_is_clean_latents
|
||||||
|
|
||||||
# they sum all the actions into a single token
|
# they sum all the actions into a single token
|
||||||
|
|
||||||
@ -611,19 +611,15 @@ class DynamicsModel(Module):
|
|||||||
|
|
||||||
noise = torch.randn_like(latents)
|
noise = torch.randn_like(latents)
|
||||||
|
|
||||||
interp = rearrange(signal_levels.float() / self.num_signal_levels, 'b t -> b t 1')
|
times = signal_levels.float() / self.num_signal_levels
|
||||||
|
|
||||||
orig_latents = latents
|
times = rearrange(times, 'b t -> b t 1')
|
||||||
|
|
||||||
latents = noise.lerp(latents, interp)
|
flow = latents - noise
|
||||||
|
|
||||||
# allow for original velocity pred
|
latents = noise.lerp(latents, times)
|
||||||
# x-space as in paper is in else clause
|
|
||||||
|
|
||||||
if not self.pred_orig_latent:
|
noised_latents = latents
|
||||||
pred_target = flow = latents - noise
|
|
||||||
else:
|
|
||||||
pred_target = latents
|
|
||||||
|
|
||||||
# latents to spatial tokens
|
# latents to spatial tokens
|
||||||
|
|
||||||
@ -677,7 +673,15 @@ class DynamicsModel(Module):
|
|||||||
if not flow_matching:
|
if not flow_matching:
|
||||||
return pred
|
return pred
|
||||||
|
|
||||||
return F.mse_loss(pred, pred_target)
|
# x-space vs v-space
|
||||||
|
|
||||||
|
if self.pred_is_clean_latents:
|
||||||
|
denoised_latent = pred
|
||||||
|
pred_flow = (denoised_latent - noised_latents) / (1. - times)
|
||||||
|
else:
|
||||||
|
pred_flow = pred
|
||||||
|
|
||||||
|
return F.mse_loss(pred_flow, flow)
|
||||||
|
|
||||||
# dreamer
|
# dreamer
|
||||||
|
|
||||||
|
|||||||
@ -2,9 +2,9 @@ import pytest
|
|||||||
param = pytest.mark.parametrize
|
param = pytest.mark.parametrize
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
@param('pred_orig_latent', (False, True))
|
@param('pred_is_clean_latents', (False, True))
|
||||||
def test_e2e(
|
def test_e2e(
|
||||||
pred_orig_latent
|
pred_is_clean_latents
|
||||||
):
|
):
|
||||||
from dreamer4.dreamer4 import VideoTokenizer, DynamicsModel
|
from dreamer4.dreamer4 import VideoTokenizer, DynamicsModel
|
||||||
|
|
||||||
@ -17,7 +17,7 @@ def test_e2e(
|
|||||||
latents = tokenizer(x, return_latents = True)
|
latents = tokenizer(x, return_latents = True)
|
||||||
assert latents.shape[-1] == 32
|
assert latents.shape[-1] == 32
|
||||||
|
|
||||||
dynamics = DynamicsModel(512, dim_latent = 32, num_signal_levels = 500, num_step_sizes = 32, pred_orig_latent = pred_orig_latent)
|
dynamics = DynamicsModel(512, dim_latent = 32, num_signal_levels = 500, num_step_sizes = 32, pred_is_clean_latents = pred_is_clean_latents)
|
||||||
|
|
||||||
signal_levels = torch.randint(0, 500, (2, 4))
|
signal_levels = torch.randint(0, 500, (2, 4))
|
||||||
step_sizes = torch.randint(0, 32, (2, 4))
|
step_sizes = torch.randint(0, 32, (2, 4))
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user