complete the latent autoregressive prediction, to use the log variance as a state entropy bonus

This commit is contained in:
lucidrains 2025-12-03 06:40:19 -08:00
parent 125693ce1c
commit fb6d69f43a
2 changed files with 41 additions and 16 deletions

View File

@ -73,12 +73,14 @@ LinearNoBias = partial(Linear, bias = False)
TokenizerLosses = namedtuple('TokenizerLosses', ('recon', 'lpips', 'time_decorr', 'space_decorr')) TokenizerLosses = namedtuple('TokenizerLosses', ('recon', 'lpips', 'time_decorr', 'space_decorr'))
WorldModelLosses = namedtuple('WorldModelLosses', ('flow', 'rewards', 'discrete_actions', 'continuous_actions')) WorldModelLosses = namedtuple('WorldModelLosses', ('flow', 'rewards', 'discrete_actions', 'continuous_actions', 'state_pred'))
AttentionIntermediates = namedtuple('AttentionIntermediates', ('next_kv_cache', 'normed_inputs')) AttentionIntermediates = namedtuple('AttentionIntermediates', ('next_kv_cache', 'normed_inputs'))
TransformerIntermediates = namedtuple('TransformerIntermediates', ('next_kv_cache', 'normed_time_inputs', 'normed_space_inputs', 'next_rnn_hiddens')) TransformerIntermediates = namedtuple('TransformerIntermediates', ('next_kv_cache', 'normed_time_inputs', 'normed_space_inputs', 'next_rnn_hiddens'))
Predictions = namedtuple('Predictions', ('flow', 'proprioception', 'state'))
MaybeTensor = Tensor | None MaybeTensor = Tensor | None
@dataclass @dataclass
@ -3060,8 +3062,10 @@ class DynamicsWorldModel(Module):
# maybe proprio # maybe proprio
if has_proprio: # maybe proprio
pred, pred_proprio = pred
pred_proprio = pred.proprioception
pred = pred.flow
# unpack pred # unpack pred
@ -3555,23 +3559,29 @@ class DynamicsWorldModel(Module):
if self.has_proprio: if self.has_proprio:
pred_proprio = self.to_proprio_pred(proprio_token) pred_proprio = self.to_proprio_pred(proprio_token)
else:
pred = (pred, pred_proprio) pred_proprio = None
# maybe state pred # maybe state pred
if self.should_pred_state: if self.should_pred_state:
pred_state = self.to_state_pred(state_pred_token) pred_state = self.to_state_pred(state_pred_token)
else:
pred_state = None
# returning # returning
# returning
predictions = Predictions(pred, pred_proprio, pred_state)
if not return_agent_tokens: if not return_agent_tokens:
return pred return predictions
if not return_time_cache: if not return_time_cache:
return pred, agent_tokens return predictions, agent_tokens
return pred, (agent_tokens, intermediates) return predictions, (agent_tokens, intermediates)
# curry into get_prediction what does not change during first call as well as the shortcut ones # curry into get_prediction what does not change during first call as well as the shortcut ones
@ -3590,12 +3600,13 @@ class DynamicsWorldModel(Module):
# pack the predictions to calculate flow for different modalities all at once # pack the predictions to calculate flow for different modalities all at once
if self.has_proprio: if self.has_proprio:
pred, for_flow_loss_packed_shape = pack(pred, 'b t *') packed_pred, for_flow_loss_packed_shape = pack((pred.flow, pred.proprioception), 'b t *')
noised, _ = pack((noised_latents, noised_proprio), 'b t *') noised, _ = pack((noised_latents, noised_proprio), 'b t *')
data, _ = pack((latents, proprio), 'b t *') data, _ = pack((latents, proprio), 'b t *')
noise, _ = pack((noise, proprio_noise), 'b t *') noise, _ = pack((noise, proprio_noise), 'b t *')
else: else:
packed_pred = pred.flow
noised = noised_latents noised = noised_latents
data = latents data = latents
@ -3614,9 +3625,10 @@ class DynamicsWorldModel(Module):
pred = fn(noised, noised_proprio, *args, **kwargs) pred = fn(noised, noised_proprio, *args, **kwargs)
if self.has_proprio: if self.has_proprio:
pred, _ = pack(pred, 'b t *') packed_flow, _ = pack((pred.flow, pred.proprioception), 'b t *')
return packed_flow
return pred return pred.flow
return inner return inner
wrapped_get_prediction = maybe_pack_unpack(_get_prediction) wrapped_get_prediction = maybe_pack_unpack(_get_prediction)
@ -3683,12 +3695,12 @@ class DynamicsWorldModel(Module):
# need to convert x-space to v-space # need to convert x-space to v-space
if is_x_space: if is_x_space:
pred = (pred - noised) / (1. - first_times) packed_pred = (packed_pred - noised) / (1. - first_times)
maybe_shortcut_loss_weight = (1. - first_times) ** 2 maybe_shortcut_loss_weight = (1. - first_times) ** 2
# mse loss # mse loss
flow_losses = F.mse_loss(pred, pred_target, reduction = 'none') flow_losses = F.mse_loss(packed_pred, pred_target, reduction = 'none')
flow_losses = flow_losses * maybe_shortcut_loss_weight # handle the (1-t)^2 in eq(7) flow_losses = flow_losses * maybe_shortcut_loss_weight # handle the (1-t)^2 in eq(7)
@ -3740,6 +3752,18 @@ class DynamicsWorldModel(Module):
else: else:
reward_loss = reduce(reward_losses, '... mtp -> mtp', 'mean') # they sum across the prediction steps (mtp dimension) - eq(9) reward_loss = reduce(reward_losses, '... mtp -> mtp', 'mean') # they sum across the prediction steps (mtp dimension) - eq(9)
# maybe autoregressive state prediction loss
state_pred_loss = self.zero
if self.should_pred_state:
pred_latent, latent_to_pred = pred.state[:, :-1], latents[:, 1:]
pred_latent_mean, pred_latent_log_var = pred_latent.unbind(dim = -1)
pred_latent_var = pred_latent_log_var.exp()
state_pred_loss = F.gaussian_nll_loss(pred_latent_mean, latent_to_pred, var = pred_latent_var)
# maybe autoregressive action loss # maybe autoregressive action loss
discrete_action_loss = self.zero discrete_action_loss = self.zero
@ -3807,7 +3831,7 @@ class DynamicsWorldModel(Module):
# handle loss normalization # handle loss normalization
losses = WorldModelLosses(flow_loss, reward_loss, discrete_action_loss, continuous_action_loss) losses = WorldModelLosses(flow_loss, reward_loss, discrete_action_loss, continuous_action_loss, state_pred_loss)
if exists(self.flow_loss_normalizer): if exists(self.flow_loss_normalizer):
flow_loss = self.flow_loss_normalizer(flow_loss, update_ema = update_loss_ema) flow_loss = self.flow_loss_normalizer(flow_loss, update_ema = update_loss_ema)
@ -3827,7 +3851,8 @@ class DynamicsWorldModel(Module):
flow_loss * self.latent_flow_loss_weight + flow_loss * self.latent_flow_loss_weight +
(reward_loss * self.reward_loss_weight).sum() + (reward_loss * self.reward_loss_weight).sum() +
(discrete_action_loss * self.discrete_action_loss_weight).sum() + (discrete_action_loss * self.discrete_action_loss_weight).sum() +
(continuous_action_loss * self.continuous_action_loss_weight).sum() (continuous_action_loss * self.continuous_action_loss_weight).sum() +
(state_pred_loss * self.state_pred_loss_weight)
) )
if not return_all_losses: if not return_all_losses:

View File

@ -1,6 +1,6 @@
[project] [project]
name = "dreamer4" name = "dreamer4"
version = "0.1.20" version = "0.1.21"
description = "Dreamer 4" description = "Dreamer 4"
authors = [ authors = [
{ name = "Phil Wang", email = "lucidrains@gmail.com" } { name = "Phil Wang", email = "lucidrains@gmail.com" }