dreamer4/tests/test_dreamer.py

798 lines
21 KiB
Python

import pytest
param = pytest.mark.parametrize
import torch
def exists(v):
return v is not None
@param('pred_orig_latent', (False, True))
@param('grouped_query_attn', (False, True))
@param('dynamics_with_video_input', (False, True))
@param('prob_no_shortcut_train', (None, 0., 1.))
@param('add_task_embeds', (False, True))
@param('num_spatial_tokens', (2, 8))
@param('signal_and_step_passed_in', (False, True))
@param('condition_on_actions', (False, True))
@param('num_residual_streams', (1, 4))
@param('add_reward_embed_to_agent_token', (False, True))
@param('use_time_kv_cache', (False, True))
@param('var_len', (False, True))
def test_e2e(
pred_orig_latent,
grouped_query_attn,
dynamics_with_video_input,
prob_no_shortcut_train,
add_task_embeds,
num_spatial_tokens,
signal_and_step_passed_in,
condition_on_actions,
num_residual_streams,
add_reward_embed_to_agent_token,
use_time_kv_cache,
var_len
):
from dreamer4.dreamer4 import VideoTokenizer, DynamicsWorldModel
tokenizer = VideoTokenizer(
16,
encoder_depth = 4,
decoder_depth = 4,
dim_latent = 16,
patch_size = 32,
attn_dim_head = 16,
num_latent_tokens = 4,
num_residual_streams = num_residual_streams
)
video = torch.randn(2, 3, 4, 256, 256)
loss = tokenizer(video)
assert loss.numel() == 1
latents = tokenizer(video, return_latents = True)
assert latents.shape[-1] == 16
recon = tokenizer.decode(latents, 256, 256)
assert recon.shape == video.shape
query_heads, heads = (16, 4) if grouped_query_attn else (8, 8)
dynamics = DynamicsWorldModel(
dim = 16,
video_tokenizer = tokenizer,
dim_latent = 16,
max_steps = 64,
num_tasks = 4,
num_latent_tokens = 4,
depth = 4,
num_spatial_tokens = num_spatial_tokens,
pred_orig_latent = pred_orig_latent,
num_discrete_actions = 4,
attn_dim_head = 16,
attn_kwargs = dict(
heads = heads,
query_heads = query_heads,
),
prob_no_shortcut_train = prob_no_shortcut_train,
add_reward_embed_to_agent_token = add_reward_embed_to_agent_token,
num_residual_streams = num_residual_streams
)
signal_levels = step_sizes_log2 = None
if signal_and_step_passed_in:
signal_levels = torch.randint(0, 32, (2, 4))
step_sizes_log2 = torch.randint(1, 5, (2,))
if dynamics_with_video_input:
dynamics_input = dict(video = video)
else:
dynamics_input = dict(latents = latents)
tasks = None
if add_task_embeds:
tasks = torch.randint(0, 4, (2,))
actions = None
if condition_on_actions:
actions = torch.randint(0, 4, (2, 3, 1))
lens = None
if var_len:
lens = torch.randint(1, 4, (2,))
flow_loss = dynamics(
**dynamics_input,
lens = lens,
tasks = tasks,
signal_levels = signal_levels,
step_sizes_log2 = step_sizes_log2,
discrete_actions = actions,
add_autoregressive_action_loss = True
)
assert flow_loss.numel() == 1
# generating
generations = dynamics.generate(
time_steps = 10,
image_height = 128,
image_width = 128,
batch_size = 2,
return_rewards_per_frame = True,
use_time_kv_cache = use_time_kv_cache
)
assert generations.video.shape == (2, 3, 10, 128, 128)
assert generations.rewards.shape == (2, 10)
# rl
rewards = torch.randn((2, 4)) * 100.
flow_loss = dynamics(
**dynamics_input,
tasks = tasks,
rewards = rewards
)
def test_symexp_two_hot():
import torch
from dreamer4.dreamer4 import SymExpTwoHot
two_hot_encoder = SymExpTwoHot(
(-3., 3.),
num_bins = 20,
learned_embedding = True,
dim_embed = 512
)
values = torch.randn((10))
two_hot_encoded = two_hot_encoder(values)
recon_values = two_hot_encoder.bins_to_scalar_value(two_hot_encoded)
assert torch.allclose(recon_values, values, atol = 1e-6)
reward_embeds = two_hot_encoder.embed(two_hot_encoded)
assert reward_embeds.shape == (10, 512)
@pytest.mark.skipif(not torch.cuda.is_available(), reason = 'no cuda')
@param('causal', (False, True))
@param('softclamp_value', (50., None))
@param('num_agent_tokens', (0, 1))
@param('causal_block_size', (1, 8))
@param('block_size_per_special', (1, 8))
@param('special_attend_only_itself', (False, True))
def test_attend_factory(
causal,
softclamp_value,
num_agent_tokens,
causal_block_size,
block_size_per_special,
special_attend_only_itself
):
from dreamer4.dreamer4 import get_attend_fn
q = torch.randn(1, 8, 1024, 512).cuda()
k = torch.randn(1, 4, 1024, 512).cuda()
v = torch.randn(1, 4, 1024, 512).cuda()
attend_kwargs = dict(
seq_len = 1024,
k_seq_len = 1024,
causal = causal,
causal_block_size = causal_block_size,
softclamp_value = softclamp_value,
device = q.device,
num_agent_tokens = num_agent_tokens,
block_size_per_special = block_size_per_special,
special_attend_only_itself = special_attend_only_itself
)
attend = get_attend_fn(True, **attend_kwargs)
flex_out = attend(q, k, v)
attend = get_attend_fn(False, **attend_kwargs)
out = attend(q, k, v)
assert torch.allclose(flex_out, out, atol = 1e-6)
def test_action_with_world_model():
from dreamer4.dreamer4 import VideoTokenizer, DynamicsWorldModel
tokenizer = VideoTokenizer(
512,
dim_latent = 32,
patch_size = 32,
encoder_depth = 4,
decoder_depth = 4,
attn_heads = 8,
image_height = 256,
image_width = 256,
attn_kwargs = dict(
query_heads = 16
)
)
dynamics = DynamicsWorldModel(
512,
num_agents = 1,
video_tokenizer = tokenizer,
dim_latent = 32,
depth = 4,
num_discrete_actions = 4
)
rewards = torch.randn(1, 4)
discrete_actions = torch.randint(0, 4, (1, 4, 1))
gen = dynamics.generate(
16,
batch_size = 4,
return_rewards_per_frame = True,
return_agent_actions = True,
return_log_probs_and_values = True
)
assert gen.video.shape == (4, 3, 16, 256, 256)
assert gen.rewards.shape == (4, 16)
discrete_actions, continuous_actions = gen.actions
assert discrete_actions.shape == (4, 16, 1)
assert continuous_actions is None
discrete_log_probs, _ = gen.log_probs
assert discrete_log_probs.shape == (4, 16, 1)
assert gen.values.shape == (4, 16)
# take a reinforcement learning step
actor_loss, critic_loss = dynamics.learn_from_experience(gen)
actor_loss.backward(retain_graph = True)
critic_loss.backward()
def test_action_embedder():
from dreamer4.dreamer4 import ActionEmbedder
# 1 discrete action with 4 choices
embedder = ActionEmbedder(
512,
num_discrete_actions = 4
)
actions = torch.randint(0, 4, (2, 3, 1))
action_embed = embedder(discrete_actions = actions)
assert action_embed.shape == (2, 3, 512)
# 2 discrete actions with 4 choices each
embedder = ActionEmbedder(
512,
num_discrete_actions = (4, 4)
)
actions = torch.randint(0, 4, (2, 3, 2))
action_embed = embedder(discrete_actions = actions)
assert action_embed.shape == (2, 3, 512)
# picking out only the second discrete action
actions = torch.randint(0, 4, (2, 3, 1))
action_embed = embedder(discrete_actions = actions, discrete_action_types = 1)
assert action_embed.shape == (2, 3, 512)
# 2 continuous actions
embedder = ActionEmbedder(
512,
num_continuous_actions = 2,
continuous_norm_stats = ((0., 2.), (1., 1.)) # (mean, std) for normalizing each action
)
actions = torch.randn((2, 3, 2))
action_embed = embedder(continuous_actions = actions)
assert action_embed.shape == (2, 3, 512)
# 2 discrete actions with 4 choices each and 2 continuous actions
embedder = ActionEmbedder(
512,
num_discrete_actions = (4, 4),
num_continuous_actions = 2
)
discrete_actions = torch.randint(0, 4, (2, 3, 2))
continuous_actions = torch.randn(2, 3, 2)
action_embed = embedder(discrete_actions = discrete_actions, continuous_actions = continuous_actions)
assert action_embed.shape == (2, 3, 512)
# picking out one discrete and one continuous
discrete_actions = torch.randint(0, 4, (2, 3, 1))
continuous_actions = torch.randn(2, 3, 1)
action_embed = embedder(discrete_actions = discrete_actions, continuous_actions = continuous_actions, discrete_action_types = 1, continuous_action_types = 0)
assert action_embed.shape == (2, 3, 512)
# unembed
embedder = ActionEmbedder(
512,
num_discrete_actions = (4, 4),
num_continuous_actions = 2,
can_unembed = True
)
discrete_actions = torch.randint(0, 4, (2, 3, 2))
continuous_actions = torch.randn(2, 3, 2)
action_embed = embedder(discrete_actions = discrete_actions, continuous_actions = continuous_actions)
discrete_logits, continuous_mean_log_var = embedder.unembed(action_embed)
assert discrete_logits.shape == (2, 3, 8)
assert continuous_mean_log_var.shape == (2, 3, 2, 2)
# test kl div
discrete_logits_tgt, continuous_mean_log_var_tgt = embedder.unembed(action_embed)
discrete_kl_div, continuous_kl_div = embedder.kl_div((discrete_logits, continuous_mean_log_var), (discrete_logits_tgt, continuous_mean_log_var_tgt))
assert discrete_kl_div.shape == (2, 3)
assert continuous_kl_div.shape == (2, 3)
# return discrete split by number of actions
discrete_logits, continuous_mean_log_var = embedder.unembed(action_embed, return_split_discrete = True)
assert discrete_logits[0].shape == discrete_logits[1].shape == (2, 3, 4)
# unembed subset of actions
discrete_logits, continuous_mean_log_var = embedder.unembed(action_embed, discrete_action_types = 1, continuous_action_types = 0)
assert discrete_logits.shape == (2, 3, 4)
assert continuous_mean_log_var.shape == (2, 3, 1, 2)
# sample actions
sampled_discrete_actions, sampled_continuous_actions = embedder.sample(action_embed, discrete_action_types = 1, continuous_action_types = 0)
assert sampled_discrete_actions.shape == (2, 3, 1)
assert sampled_continuous_actions.shape == (2, 3, 1)
# log probs
assert discrete_logits.shape == (2, 3, 4)
assert continuous_mean_log_var.shape == (2, 3, 1, 2)
discrete_log_probs, continuous_log_probs = embedder.log_probs(
action_embed,
discrete_targets = discrete_actions,
continuous_targets = continuous_actions,
parallel_discrete_calc = False
)
assert discrete_log_probs.shape == (2, 3, 2)
assert continuous_log_probs.shape == (2, 3, 2)
_, (discrete_entropies, continuous_entropies) = embedder.log_probs(
action_embed,
discrete_targets = discrete_actions,
continuous_targets = continuous_actions,
parallel_discrete_calc = True,
return_entropies = True
)
assert discrete_entropies.shape == (2, 3, 2)
assert continuous_entropies.shape == (2, 3, 2)
parallel_discrete_log_probs, _ = embedder.log_probs(
action_embed,
discrete_targets = discrete_actions,
continuous_targets = continuous_actions,
parallel_discrete_calc = True
)
assert torch.allclose(discrete_log_probs, parallel_discrete_log_probs, atol = 1e-5)
def test_mtp():
from dreamer4.dreamer4 import create_multi_token_prediction_targets
rewards = torch.randn(3, 16) # (b t)
reward_targets, mask = create_multi_token_prediction_targets(rewards, 3) # say three token lookahead
assert reward_targets.shape == (3, 16, 3)
assert mask.shape == (3, 16, 3)
actions = torch.randint(0, 10, (3, 16, 2))
action_targets, mask = create_multi_token_prediction_targets(actions, 3)
assert action_targets.shape == (3, 16, 3, 2)
assert mask.shape == (3, 16, 3)
from dreamer4.dreamer4 import ActionEmbedder
embedder = ActionEmbedder(
512,
num_discrete_actions = (4, 4),
num_continuous_actions = 2,
can_unembed = True,
num_unembed_preds = 8
)
discrete_actions = torch.randint(0, 4, (2, 3, 2))
continuous_actions = torch.randn(2, 3, 2)
action_embed = torch.randn(2, 16, 512)
discrete_logits, continuous_logits = embedder.unembed(action_embed)
assert discrete_logits.shape == (8, 2, 16, 8)
discrete_logits, continuous_logits = embedder.unembed(action_embed, pred_head_index = 0)
assert discrete_logits.shape == (2, 16, 8)
def test_loss_normalizer():
from torch import cat
from dreamer4.dreamer4 import LossNormalizer
loss_normalizer = LossNormalizer(4, beta = 0.)
losses = torch.rand(4)
_ = loss_normalizer(losses)
normed_losses = loss_normalizer(losses)
assert (normed_losses == 1.).all()
def test_tokenizer_trainer():
from dreamer4.trainers import VideoTokenizerTrainer
from dreamer4.dreamer4 import VideoTokenizer
from torch.utils.data import Dataset
class MockDataset(Dataset):
def __len__(self):
return 2
def __getitem__(self, idx):
return torch.randn(3, 2, 64, 64)
dataset = MockDataset()
tokenizer = VideoTokenizer(
16,
encoder_depth = 1,
decoder_depth = 1,
time_block_every = 1,
dim_latent = 16,
patch_size = 32,
attn_dim_head = 16,
num_latent_tokens = 4
)
trainer = VideoTokenizerTrainer(
tokenizer,
dataset = dataset,
num_train_steps = 1,
batch_size = 1,
cpu = True,
max_grad_norm = 0.5
)
trainer()
@param('with_actions', (True, False))
@param('with_rewards', (True, False))
def test_bc_trainer(
with_actions,
with_rewards
):
from dreamer4.trainers import BehaviorCloneTrainer
from dreamer4.dreamer4 import DynamicsWorldModel, VideoTokenizer
from torch.utils.data import Dataset
class MockDataset(Dataset):
def __len__(self):
return 2
def __getitem__(self, idx):
state = torch.randn(3, 2, 64, 64)
pkg = dict(video = state)
if with_actions:
pkg.update(discrete_actions = torch.randint(0, 4, (2, 1)))
if with_rewards:
pkg.update(rewards = torch.randn(2,))
return pkg
dataset = MockDataset()
tokenizer = VideoTokenizer(
16,
encoder_depth = 1,
decoder_depth = 1,
time_block_every = 1,
dim_latent = 16,
patch_size = 32,
attn_dim_head = 16,
num_latent_tokens = 1
)
world_model = DynamicsWorldModel(
video_tokenizer = tokenizer,
dim = 16,
dim_latent = 16,
max_steps = 64,
num_tasks = 4,
num_latent_tokens = 1,
depth = 1,
time_block_every = 1,
num_spatial_tokens = 1,
pred_orig_latent = True,
num_discrete_actions = 4,
attn_dim_head = 16,
prob_no_shortcut_train = 0.1,
num_residual_streams = 1
)
trainer = BehaviorCloneTrainer(
world_model,
dataset = dataset,
batch_size = 1,
num_train_steps = 1,
cpu = True
)
trainer()
def test_dream_trainer():
from dreamer4.dreamer4 import DynamicsWorldModel
world_model = DynamicsWorldModel(
dim = 16,
dim_latent = 16,
max_steps = 64,
num_tasks = 4,
num_latent_tokens = 1,
depth = 1,
time_block_every = 1,
num_spatial_tokens = 1,
pred_orig_latent = True,
num_discrete_actions = 4,
attn_dim_head = 16,
prob_no_shortcut_train = 0.1,
num_residual_streams = 1
)
# training from self-generations (dreams)
from dreamer4.trainers import DreamTrainer
dream_trainer = DreamTrainer(
world_model,
batch_size = 2,
num_train_steps = 1,
cpu = True,
)
dream_trainer()
def test_cache_generate():
from dreamer4.dreamer4 import DynamicsWorldModel
dynamics = DynamicsWorldModel(
dim = 16,
dim_latent = 16,
max_steps = 64,
num_tasks = 4,
num_latent_tokens = 4,
depth = 1,
time_block_every = 1,
num_spatial_tokens = 1,
pred_orig_latent = True,
num_discrete_actions = 4,
attn_dim_head = 16,
prob_no_shortcut_train = 0.1,
num_residual_streams = 1
)
generated, time_kv_cache = dynamics.generate(1, return_time_kv_cache = True)
generated, time_kv_cache = dynamics.generate(1, time_kv_cache = time_kv_cache, return_time_kv_cache = True)
generated, time_kv_cache = dynamics.generate(1, time_kv_cache = time_kv_cache, return_time_kv_cache = True)
@param('vectorized', (False, True))
@param('use_pmpo', (False, True))
@param('env_can_terminate', (False, True))
@param('env_can_truncate', (False, True))
@param('store_agent_embed', (False, True))
def test_online_rl(
vectorized,
use_pmpo,
env_can_terminate,
env_can_truncate,
store_agent_embed
):
from dreamer4.dreamer4 import DynamicsWorldModel, VideoTokenizer
tokenizer = VideoTokenizer(
16,
encoder_depth = 1,
decoder_depth = 1,
time_block_every = 1,
dim_latent = 16,
patch_size = 32,
attn_dim_head = 16,
num_latent_tokens = 1
)
world_model_and_policy = DynamicsWorldModel(
video_tokenizer = tokenizer,
dim = 16,
dim_latent = 16,
max_steps = 64,
num_tasks = 4,
num_latent_tokens = 1,
depth = 1,
time_block_every = 1,
num_spatial_tokens = 1,
pred_orig_latent = True,
num_discrete_actions = 4,
attn_dim_head = 16,
prob_no_shortcut_train = 0.1,
num_residual_streams = 1
)
from dreamer4.mocks import MockEnv
from dreamer4.dreamer4 import combine_experiences
mock_env = MockEnv(
(256, 256),
vectorized = vectorized,
num_envs = 4,
terminate_after_step = 2 if env_can_terminate else None,
can_truncate = env_can_truncate,
rand_terminate_prob = 0.1
)
# manually
one_experience = world_model_and_policy.interact_with_env(mock_env, max_timesteps = 8, env_is_vectorized = vectorized, store_agent_embed = store_agent_embed)
another_experience = world_model_and_policy.interact_with_env(mock_env, max_timesteps = 16, env_is_vectorized = vectorized, store_agent_embed = store_agent_embed)
combined_experience = combine_experiences([one_experience, another_experience])
if store_agent_embed:
assert exists(combined_experience.agent_embed)
actor_loss, critic_loss = world_model_and_policy.learn_from_experience(combined_experience, use_pmpo = use_pmpo)
actor_loss.backward()
critic_loss.backward()
# with trainer
from dreamer4.trainers import SimTrainer
trainer = SimTrainer(
world_model_and_policy,
batch_size = 4,
cpu = True
)
trainer(mock_env, num_episodes = 2, env_is_vectorized = vectorized)
@param('num_video_views', (1, 2))
def test_proprioception(
num_video_views
):
from dreamer4.dreamer4 import VideoTokenizer, DynamicsWorldModel
tokenizer = VideoTokenizer(
512,
dim_latent = 32,
patch_size = 32,
encoder_depth = 2,
decoder_depth = 2,
time_block_every = 2,
attn_heads = 8,
image_height = 256,
image_width = 256,
attn_kwargs = dict(
query_heads = 16
)
)
dynamics = DynamicsWorldModel(
512,
num_agents = 1,
video_tokenizer = tokenizer,
dim_latent = 32,
dim_proprio = 21,
num_tasks = 4,
num_video_views = num_video_views,
num_discrete_actions = 4,
num_residual_streams = 1
)
if num_video_views > 1:
video_shape = (2, num_video_views, 3, 10, 256, 256)
else:
video_shape = (2, 3, 10, 256, 256)
video = torch.randn(*video_shape)
rewards = torch.randn(2, 10)
proprio = torch.randn(2, 10, 21)
discrete_actions = torch.randint(0, 4, (2, 10, 1))
tasks = torch.randint(0, 4, (2,))
loss = dynamics(
video = video,
rewards = rewards,
tasks = tasks,
proprio = proprio,
discrete_actions = discrete_actions
)
loss.backward()
generations = dynamics.generate(
10,
batch_size = 2,
return_decoded_video = True
)
assert exists(generations.proprio)
assert generations.video.shape == video_shape
def test_epo():
from dreamer4.dreamer4 import VideoTokenizer, DynamicsWorldModel
tokenizer = VideoTokenizer(
512,
dim_latent = 32,
patch_size = 32,
encoder_depth = 2,
decoder_depth = 2,
time_block_every = 2,
attn_heads = 8,
image_height = 256,
image_width = 256,
attn_kwargs = dict(
query_heads = 16
)
)
dynamics = DynamicsWorldModel(
512,
num_agents = 1,
video_tokenizer = tokenizer,
dim_latent = 32,
dim_proprio = 21,
num_tasks = 4,
num_latent_genes = 16,
num_discrete_actions = 4,
num_residual_streams = 1
)
fitness = torch.randn(16,)
dynamics.evolve_(fitness)