dreamer4/tests/test_dreamer.py

39 lines
1.1 KiB
Python

import pytest
param = pytest.mark.parametrize
import torch
@param('pred_orig_latent', (False, True))
def test_e2e(
pred_orig_latent
):
from dreamer4.dreamer4 import VideoTokenizer, DynamicsModel
tokenizer = VideoTokenizer(512, dim_latent = 32, patch_size = 32)
x = torch.randn(2, 3, 4, 256, 256)
loss = tokenizer(x)
assert loss.numel() == 1
latents = tokenizer(x, return_latents = True)
assert latents.shape[-1] == 32
dynamics = DynamicsModel(512, dim_latent = 32, num_signal_levels = 500, num_step_sizes = 32, pred_orig_latent = pred_orig_latent)
signal_levels = torch.randint(0, 500, (2, 4))
step_sizes = torch.randint(0, 32, (2, 4))
flow_loss = dynamics(latents, signal_levels = signal_levels, step_sizes = step_sizes)
assert flow_loss.numel() == 1
def test_symexp_two_hot():
import torch
from dreamer4.dreamer4 import SymExpTwoHot
two_hot_encoder = SymExpTwoHot((-3., 3.), 20)
values = torch.randn((10))
encoded = two_hot_encoder(values)
recon_values = two_hot_encoder.logits_to_scalar_value(encoded)
assert torch.allclose(recon_values, values, atol = 1e-6)