updated requirements

This commit is contained in:
NM512 2024-09-24 00:33:02 +09:00
parent 6d08232ad7
commit 4538f366e7
5 changed files with 43 additions and 41 deletions

View File

@ -1,28 +1,30 @@
# 1. Test setup:
# docker run -it --rm --gpus all pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime nvidia-smi
# docker run -it --rm --gpus all pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime nvidia-smi
#
# If the above does not work, try adding the --privileged flag
# and changing the command to `sh -c 'ldconfig -v && nvidia-smi'`.
#
# 2. Start training:
# docker build -f Dockerfile -t img . && \
# docker run -it --rm --gpus all -v $PWD:/workspace -u $(id -u):$(id -g) img \
# docker run -it --rm --gpus all -v $PWD:/workspace img \
# sh xvfb_run.sh python3 dreamer.py \
# --configs dmc_vision --task dmc_walker_walk \
# --logdir "./logdir/dmc_walker_walk"
#
# 3. See results:
# tensorboard --logdir ~/logdir
#
# 4. To set up Atari or Minecraft environments, please check the scripts located in "env/setup_scripts".
# System
FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime
FROM pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime
ARG DEBIAN_FRONTEND=noninteractive
ENV TZ=America/San_Francisco
ENV PYTHONUNBUFFERED 1
ENV PIP_DISABLE_PIP_VERSION_CHECK 1
ENV PIP_NO_CACHE_DIR 1
RUN apt-get update && apt-get install -y \
vim libglew2.1 libgl1-mesa-glx libosmesa6 \
vim libgl1-mesa-glx libosmesa6 \
wget unrar cmake g++ libgl1-mesa-dev \
libx11-6 openjdk-8-jdk x11-xserver-utils xvfb \
&& apt-get clean
@ -31,28 +33,8 @@ RUN pip3 install --upgrade pip
# Envs
ENV NUMBA_CACHE_DIR=/tmp
# dmc setup
RUN pip3 install tensorboard
RUN pip3 install gym==0.19.0
RUN pip3 install mujoco==2.3.5
RUN pip3 install dm_control==1.0.9
RUN pip3 install moviepy
WORKDIR /workspace
COPY requirements.txt .
# crafter setup
RUN pip3 install crafter==1.8.0
# atari setup
RUN pip3 install atari-py==0.2.9
RUN pip3 install opencv-python==4.7.0.72
RUN mkdir roms && cd roms
RUN wget -L -nv http://www.atarimania.com/roms/Roms.rar
RUN unrar x -o+ Roms.rar
RUN python3 -m atari_py.import_roms ROMS
RUN cd .. && rm -rf roms
# memorymaze setup
RUN pip3 install memory_maze==1.0.3
# minecraft setup
RUN pip3 install minerl==0.4.4
RUN pip3 install numpy==1.21.0
# Install requiremqnts
RUN pip3 install -r requirements.txt

View File

@ -5,7 +5,7 @@ Pytorch implementation of [Mastering Diverse Domains through World Models](https
### Method 1: Manual
Get dependencies with python 3.9:
Get dependencies with python 3.11:
```
pip install -r requirements.txt
```
@ -17,6 +17,8 @@ Monitor results:
```
tensorboard --logdir ./logdir
```
To set up Atari or Minecraft environments, please check the scripts located in [env/setup_scripts](https://github.com/NM512/dreamerv3-torch/tree/main/envs/setup_scripts).
### Method 2: Docker
Please refer to the Dockerfile for the instructions, as they are included within.

View File

@ -0,0 +1,10 @@
#!/bin/sh
# Run this script to install Atari
pip3 install atari-py==0.2.9
pip3 install opencv-python==4.7.0.72
mkdir roms && cd roms
wget -L -nv http://www.atarimania.com/roms/Roms.rar
unrar x -o+ Roms.rar
python3 -m atari_py.import_roms ROMS
cd .. && rm -rf roms

View File

@ -0,0 +1,16 @@
#!/bin/sh
# Install Java 8 before running this script by either of the following methods.
# 1. Use docker
# $ apt-get update
# $ apt-get install -y openjdk-8-jdk
# 2. Use conda
# $ conda install -c conda-forge openjdk=8
pip3 install https://github.com/NM512/minerl/releases/download/v0.4.4-patched/minerl_mirror-0.4.4-cp311-cp311-linux_x86_64.whl
# Downgrade to install old gym
pip3 install setuptools==60.0.0
pip3 install pip==22.0
pip3 install gym==0.19.0
pip3 install cloudpickle==2.2.1

View File

@ -1,22 +1,14 @@
setuptools==60.0.0
torch==2.0.0
torchvision==0.15.1
pandas==1.2.4
torch==2.4.1
matplotlib==3.5.0
ruamel.yaml==0.17.4
moviepy==1.0.3
einops==0.3.0
protobuf==3.20.0
gym==0.19.0
gym==0.22.0
mujoco==2.3.5
dm_control==1.0.9
scipy==1.8.0
memory_maze==1.0.3
atari-py==0.2.9
crafter==1.8.0
opencv-python==4.7.0.72
numpy==1.21.0
tensorboard
# minerl==0.4.4
# This was needed for minerl
# conda install -c conda-forge openjdk=8
numpy==1.23.5
tensorboard==2.17.1