set default replay buffer size as 1M
This commit is contained in:
parent
57ac1c11d3
commit
cd935b7dd9
@ -80,7 +80,7 @@ defaults:
|
||||
ac_opt_eps: 1e-5
|
||||
value_grad_clip: 100
|
||||
actor_grad_clip: 100
|
||||
dataset_size: 0
|
||||
dataset_size: 1000000
|
||||
oversample_ends: False
|
||||
slow_value_target: True
|
||||
slow_target_update: 1
|
||||
|
@ -252,14 +252,14 @@ class ProcessEpisodeWrap:
|
||||
cls.eval_lengths = []
|
||||
cache.clear()
|
||||
|
||||
if mode == "train" and config.dataset_size:
|
||||
if mode == "train":
|
||||
total = 0
|
||||
for key, ep in reversed(sorted(cache.items(), key=lambda x: x[0])):
|
||||
if total <= config.dataset_size - length:
|
||||
if not config.dataset_size or total <= config.dataset_size - length:
|
||||
total += len(ep["reward"]) - 1
|
||||
else:
|
||||
del cache[key]
|
||||
logger.scalar("dataset_size", total + length)
|
||||
logger.scalar("dataset_size", total)
|
||||
print(f"{mode.title()} episode has {length} steps and return {score:.1f}.")
|
||||
logger.scalar(f"{mode}_return", score)
|
||||
logger.scalar(f"{mode}_length", length)
|
||||
|
Loading…
x
Reference in New Issue
Block a user