mem maze env ok 1
This commit is contained in:
parent
1cf0149c10
commit
ea446adaf4
15
configs.yaml
15
configs.yaml
@ -25,7 +25,7 @@ defaults:
|
||||
action_repeat: 2
|
||||
time_limit: 1000
|
||||
grayscale: False
|
||||
prefill: 3500
|
||||
prefill: 2500
|
||||
eval_noise: 0.0
|
||||
reward_EMA: True
|
||||
|
||||
@ -148,10 +148,6 @@ atari100k:
|
||||
imag_gradient: 'reinforce'
|
||||
time_limit: 108000
|
||||
|
||||
mazed:
|
||||
task: "memmaze_9_9"
|
||||
steps: 1e6
|
||||
action_repeat: 2
|
||||
|
||||
debug:
|
||||
debug: True
|
||||
@ -161,13 +157,10 @@ debug:
|
||||
batch_length: 20
|
||||
|
||||
mazegym:
|
||||
#task: "memory_maze:MemoryMaze-9x9-v0"
|
||||
steps: 1e6
|
||||
action_repeat: 2
|
||||
|
||||
mazedeepm:
|
||||
task: "memmaze_9_9"
|
||||
task: 9
|
||||
steps: 1e6
|
||||
action_repeat: 2
|
||||
|
||||
|
||||
|
||||
|
||||
|
15
dreamer.py
15
dreamer.py
@ -212,16 +212,17 @@ def make_env(config, logger, mode, train_eps, eval_eps):
|
||||
env = wrappers.OneHotAction(env)
|
||||
elif suite == "mazegym":
|
||||
import gym
|
||||
env = gym.make('memory_maze:MemoryMaze-9x9-v0')
|
||||
if task == 9:
|
||||
env = gym.make('memory_maze:MemoryMaze-9x9-v0')
|
||||
elif task == 15:
|
||||
env = gym.make('memory_maze:MemoryMaze-15x15-v0')
|
||||
else:
|
||||
raise NotImplementedError(suite)
|
||||
from envs.memmazeEnv import MZGymWrapper
|
||||
env = MZGymWrapper(env)
|
||||
#from envs.memmazeEnv import OneHotAction as OneHotAction2
|
||||
env = wrappers.OneHotAction(env)
|
||||
elif suite == "---------mazed":
|
||||
from memory_maze import tasks
|
||||
## !!!!!!!!!!!!!!!!!!!!!!!!
|
||||
env = tasks.memory_maze_9x9()
|
||||
env = wrappers.OneHotAction(env)
|
||||
env = wrappers.OneHotAction2(env)
|
||||
|
||||
else:
|
||||
raise NotImplementedError(suite)
|
||||
env = wrappers.TimeLimit(env, config.time_limit)
|
||||
|
@ -8,6 +8,7 @@ import cloudpickle
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
###from tf dreamerv2 code
|
||||
|
||||
class MZGymWrapper:
|
||||
|
||||
@ -86,571 +87,3 @@ class MZGymWrapper:
|
||||
obs['is_terminal'] = False
|
||||
return obs
|
||||
|
||||
|
||||
class DMC:
|
||||
|
||||
def __init__(self, name, action_repeat=1, size=(64, 64), camera=None):
|
||||
os.environ['MUJOCO_GL'] = 'egl'
|
||||
domain, task = name.split('_', 1)
|
||||
if domain == 'cup': # Only domain with multiple words.
|
||||
domain = 'ball_in_cup'
|
||||
if domain == 'manip':
|
||||
from dm_control import manipulation
|
||||
self._env = manipulation.load(task + '_vision')
|
||||
elif domain == 'locom':
|
||||
from dm_control.locomotion.examples import basic_rodent_2020
|
||||
self._env = getattr(basic_rodent_2020, task)()
|
||||
else:
|
||||
from dm_control import suite
|
||||
self._env = suite.load(domain, task)
|
||||
self._action_repeat = action_repeat
|
||||
self._size = size
|
||||
if camera in (-1, None):
|
||||
camera = dict(
|
||||
quadruped_walk=2, quadruped_run=2, quadruped_escape=2,
|
||||
quadruped_fetch=2, locom_rodent_maze_forage=1,
|
||||
locom_rodent_two_touch=1,
|
||||
).get(name, 0)
|
||||
self._camera = camera
|
||||
self._ignored_keys = []
|
||||
for key, value in self._env.observation_spec().items():
|
||||
if value.shape == (0,):
|
||||
print(f"Ignoring empty observation key '{key}'.")
|
||||
self._ignored_keys.append(key)
|
||||
|
||||
@property
|
||||
def obs_space(self):
|
||||
spaces = {
|
||||
'image': gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8),
|
||||
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
|
||||
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
}
|
||||
for key, value in self._env.observation_spec().items():
|
||||
if key in self._ignored_keys:
|
||||
continue
|
||||
if value.dtype == np.float64:
|
||||
spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, np.float32)
|
||||
elif value.dtype == np.uint8:
|
||||
spaces[key] = gym.spaces.Box(0, 255, value.shape, np.uint8)
|
||||
else:
|
||||
raise NotImplementedError(value.dtype)
|
||||
return spaces
|
||||
|
||||
@property
|
||||
def act_space(self):
|
||||
spec = self._env.action_spec()
|
||||
action = gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
|
||||
return {'action': action}
|
||||
|
||||
def step(self, action):
|
||||
assert np.isfinite(action['action']).all(), action['action']
|
||||
reward = 0.0
|
||||
for _ in range(self._action_repeat):
|
||||
time_step = self._env.step(action['action'])
|
||||
reward += time_step.reward or 0.0
|
||||
if time_step.last():
|
||||
break
|
||||
assert time_step.discount in (0, 1)
|
||||
obs = {
|
||||
'reward': reward,
|
||||
'is_first': False,
|
||||
'is_last': time_step.last(),
|
||||
'is_terminal': time_step.discount == 0,
|
||||
'image': self._env.physics.render(*self._size, camera_id=self._camera),
|
||||
}
|
||||
obs.update({
|
||||
k: v for k, v in dict(time_step.observation).items()
|
||||
if k not in self._ignored_keys})
|
||||
return obs
|
||||
|
||||
def reset(self):
|
||||
time_step = self._env.reset()
|
||||
obs = {
|
||||
'reward': 0.0,
|
||||
'is_first': True,
|
||||
'is_last': False,
|
||||
'is_terminal': False,
|
||||
'image': self._env.physics.render(*self._size, camera_id=self._camera),
|
||||
}
|
||||
obs.update({
|
||||
k: v for k, v in dict(time_step.observation).items()
|
||||
if k not in self._ignored_keys})
|
||||
return obs
|
||||
|
||||
|
||||
class Atari:
|
||||
|
||||
LOCK = threading.Lock()
|
||||
|
||||
def __init__(
|
||||
self, name, action_repeat=4, size=(84, 84), grayscale=True, noops=30,
|
||||
life_done=False, sticky=True, all_actions=False):
|
||||
assert size[0] == size[1]
|
||||
import gym.wrappers
|
||||
import gym.envs.atari
|
||||
if name == 'james_bond':
|
||||
name = 'jamesbond'
|
||||
with self.LOCK:
|
||||
env = gym.envs.atari.AtariEnv(
|
||||
game=name, obs_type='image', frameskip=1,
|
||||
repeat_action_probability=0.25 if sticky else 0.0,
|
||||
full_action_space=all_actions)
|
||||
# Avoid unnecessary rendering in inner env.
|
||||
env._get_obs = lambda: None
|
||||
# Tell wrapper that the inner env has no action repeat.
|
||||
env.spec = gym.envs.registration.EnvSpec('NoFrameskip-v0')
|
||||
self._env = gym.wrappers.AtariPreprocessing(
|
||||
env, noops, action_repeat, size[0], life_done, grayscale)
|
||||
self._size = size
|
||||
self._grayscale = grayscale
|
||||
|
||||
@property
|
||||
def obs_space(self):
|
||||
shape = self._size + (1 if self._grayscale else 3,)
|
||||
return {
|
||||
'image': gym.spaces.Box(0, 255, shape, np.uint8),
|
||||
'ram': gym.spaces.Box(0, 255, (128,), np.uint8),
|
||||
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
|
||||
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
}
|
||||
|
||||
@property
|
||||
def act_space(self):
|
||||
return {'action': self._env.action_space}
|
||||
|
||||
def step(self, action):
|
||||
image, reward, done, info = self._env.step(action['action'])
|
||||
if self._grayscale:
|
||||
image = image[..., None]
|
||||
return {
|
||||
'image': image,
|
||||
'ram': self._env.env._get_ram(),
|
||||
'reward': reward,
|
||||
'is_first': False,
|
||||
'is_last': done,
|
||||
'is_terminal': done,
|
||||
}
|
||||
|
||||
def reset(self):
|
||||
with self.LOCK:
|
||||
image = self._env.reset()
|
||||
if self._grayscale:
|
||||
image = image[..., None]
|
||||
return {
|
||||
'image': image,
|
||||
'ram': self._env.env._get_ram(),
|
||||
'reward': 0.0,
|
||||
'is_first': True,
|
||||
'is_last': False,
|
||||
'is_terminal': False,
|
||||
}
|
||||
|
||||
def close(self):
|
||||
return self._env.close()
|
||||
|
||||
|
||||
class Crafter:
|
||||
|
||||
def __init__(self, outdir=None, reward=True, seed=None):
|
||||
import crafter
|
||||
self._env = crafter.Env(reward=reward, seed=seed)
|
||||
self._env = crafter.Recorder(
|
||||
self._env, outdir,
|
||||
save_stats=True,
|
||||
save_video=False,
|
||||
save_episode=False,
|
||||
)
|
||||
self._achievements = crafter.constants.achievements.copy()
|
||||
|
||||
@property
|
||||
def obs_space(self):
|
||||
spaces = {
|
||||
'image': self._env.observation_space,
|
||||
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
|
||||
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
'log_reward': gym.spaces.Box(-np.inf, np.inf, (), np.float32),
|
||||
}
|
||||
spaces.update({
|
||||
f'log_achievement_{k}': gym.spaces.Box(0, 2 ** 31 - 1, (), np.int32)
|
||||
for k in self._achievements})
|
||||
return spaces
|
||||
|
||||
@property
|
||||
def act_space(self):
|
||||
return {'action': self._env.action_space}
|
||||
|
||||
def step(self, action):
|
||||
image, reward, done, info = self._env.step(action['action'])
|
||||
obs = {
|
||||
'image': image,
|
||||
'reward': reward,
|
||||
'is_first': False,
|
||||
'is_last': done,
|
||||
'is_terminal': info['discount'] == 0,
|
||||
'log_reward': info['reward'],
|
||||
}
|
||||
obs.update({
|
||||
f'log_achievement_{k}': v
|
||||
for k, v in info['achievements'].items()})
|
||||
return obs
|
||||
|
||||
def reset(self):
|
||||
obs = {
|
||||
'image': self._env.reset(),
|
||||
'reward': 0.0,
|
||||
'is_first': True,
|
||||
'is_last': False,
|
||||
'is_terminal': False,
|
||||
'log_reward': 0.0,
|
||||
}
|
||||
obs.update({
|
||||
f'log_achievement_{k}': 0
|
||||
for k in self._achievements})
|
||||
return obs
|
||||
|
||||
|
||||
class Dummy:
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@property
|
||||
def obs_space(self):
|
||||
return {
|
||||
'image': gym.spaces.Box(0, 255, (64, 64, 3), dtype=np.uint8),
|
||||
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
|
||||
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
|
||||
}
|
||||
|
||||
@property
|
||||
def act_space(self):
|
||||
return {'action': gym.spaces.Box(-1, 1, (6,), dtype=np.float32)}
|
||||
|
||||
def step(self, action):
|
||||
return {
|
||||
'image': np.zeros((64, 64, 3)),
|
||||
'reward': 0.0,
|
||||
'is_first': False,
|
||||
'is_last': False,
|
||||
'is_terminal': False,
|
||||
}
|
||||
|
||||
def reset(self):
|
||||
return {
|
||||
'image': np.zeros((64, 64, 3)),
|
||||
'reward': 0.0,
|
||||
'is_first': True,
|
||||
'is_last': False,
|
||||
'is_terminal': False,
|
||||
}
|
||||
|
||||
|
||||
class TimeLimit:
|
||||
|
||||
def __init__(self, env, duration):
|
||||
self._env = env
|
||||
self._duration = duration
|
||||
self._step = None
|
||||
|
||||
def __getattr__(self, name):
|
||||
if name.startswith('__'):
|
||||
raise AttributeError(name)
|
||||
try:
|
||||
return getattr(self._env, name)
|
||||
except AttributeError:
|
||||
raise ValueError(name)
|
||||
|
||||
def step(self, action):
|
||||
assert self._step is not None, 'Must reset environment.'
|
||||
obs = self._env.step(action)
|
||||
self._step += 1
|
||||
if self._duration and self._step >= self._duration:
|
||||
obs['is_last'] = True
|
||||
self._step = None
|
||||
return obs
|
||||
|
||||
def reset(self):
|
||||
self._step = 0
|
||||
return self._env.reset()
|
||||
|
||||
|
||||
class NormalizeAction:
|
||||
|
||||
def __init__(self, env, key='action'):
|
||||
self._env = env
|
||||
self._key = key
|
||||
space = env.act_space[key]
|
||||
self._mask = np.isfinite(space.low) & np.isfinite(space.high)
|
||||
self._low = np.where(self._mask, space.low, -1)
|
||||
self._high = np.where(self._mask, space.high, 1)
|
||||
|
||||
def __getattr__(self, name):
|
||||
if name.startswith('__'):
|
||||
raise AttributeError(name)
|
||||
try:
|
||||
return getattr(self._env, name)
|
||||
except AttributeError:
|
||||
raise ValueError(name)
|
||||
|
||||
@property
|
||||
def act_space(self):
|
||||
low = np.where(self._mask, -np.ones_like(self._low), self._low)
|
||||
high = np.where(self._mask, np.ones_like(self._low), self._high)
|
||||
space = gym.spaces.Box(low, high, dtype=np.float32)
|
||||
return {**self._env.act_space, self._key: space}
|
||||
|
||||
def step(self, action):
|
||||
orig = (action[self._key] + 1) / 2 * (self._high - self._low) + self._low
|
||||
orig = np.where(self._mask, orig, action[self._key])
|
||||
return self._env.step({**action, self._key: orig})
|
||||
|
||||
|
||||
class OneHotAction:
|
||||
|
||||
def __init__(self, env, key='action'):
|
||||
assert hasattr(env.act_space[key], 'n')
|
||||
self._env = env
|
||||
self._key = key
|
||||
self._random = np.random.RandomState()
|
||||
|
||||
def __getattr__(self, name):
|
||||
if name.startswith('__'):
|
||||
raise AttributeError(name)
|
||||
try:
|
||||
return getattr(self._env, name)
|
||||
except AttributeError:
|
||||
raise ValueError(name)
|
||||
|
||||
@property
|
||||
def act_space(self):
|
||||
shape = (self._env.act_space[self._key].n,)
|
||||
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
|
||||
space.sample = self._sample_action
|
||||
space.n = shape[0]
|
||||
return {**self._env.act_space, self._key: space}
|
||||
|
||||
def step(self, action):
|
||||
index = np.argmax(action[self._key]).astype(int)
|
||||
reference = np.zeros_like(action[self._key])
|
||||
reference[index] = 1
|
||||
if not np.allclose(reference, action[self._key]):
|
||||
raise ValueError(f'Invalid one-hot action:\n{action}')
|
||||
return self._env.step({**action, self._key: index})
|
||||
|
||||
def reset(self):
|
||||
return self._env.reset()
|
||||
|
||||
def _sample_action(self):
|
||||
actions = self._env.act_space.n
|
||||
index = self._random.randint(0, actions)
|
||||
reference = np.zeros(actions, dtype=np.float32)
|
||||
reference[index] = 1.0
|
||||
return reference
|
||||
|
||||
|
||||
class ResizeImage:
|
||||
|
||||
def __init__(self, env, size=(64, 64)):
|
||||
self._env = env
|
||||
self._size = size
|
||||
self._keys = [
|
||||
k for k, v in env.obs_space.items()
|
||||
if len(v.shape) > 1 and v.shape[:2] != size]
|
||||
print(f'Resizing keys {",".join(self._keys)} to {self._size}.')
|
||||
if self._keys:
|
||||
from PIL import Image
|
||||
self._Image = Image
|
||||
|
||||
def __getattr__(self, name):
|
||||
if name.startswith('__'):
|
||||
raise AttributeError(name)
|
||||
try:
|
||||
return getattr(self._env, name)
|
||||
except AttributeError:
|
||||
raise ValueError(name)
|
||||
|
||||
@property
|
||||
def obs_space(self):
|
||||
spaces = self._env.obs_space
|
||||
for key in self._keys:
|
||||
shape = self._size + spaces[key].shape[2:]
|
||||
spaces[key] = gym.spaces.Box(0, 255, shape, np.uint8)
|
||||
return spaces
|
||||
|
||||
def step(self, action):
|
||||
obs = self._env.step(action)
|
||||
for key in self._keys:
|
||||
obs[key] = self._resize(obs[key])
|
||||
return obs
|
||||
|
||||
def reset(self):
|
||||
obs = self._env.reset()
|
||||
for key in self._keys:
|
||||
obs[key] = self._resize(obs[key])
|
||||
return obs
|
||||
|
||||
def _resize(self, image):
|
||||
image = self._Image.fromarray(image)
|
||||
image = image.resize(self._size, self._Image.NEAREST)
|
||||
image = np.array(image)
|
||||
return image
|
||||
|
||||
|
||||
class RenderImage:
|
||||
|
||||
def __init__(self, env, key='image'):
|
||||
self._env = env
|
||||
self._key = key
|
||||
self._shape = self._env.render().shape
|
||||
|
||||
def __getattr__(self, name):
|
||||
if name.startswith('__'):
|
||||
raise AttributeError(name)
|
||||
try:
|
||||
return getattr(self._env, name)
|
||||
except AttributeError:
|
||||
raise ValueError(name)
|
||||
|
||||
@property
|
||||
def obs_space(self):
|
||||
spaces = self._env.obs_space
|
||||
spaces[self._key] = gym.spaces.Box(0, 255, self._shape, np.uint8)
|
||||
return spaces
|
||||
|
||||
def step(self, action):
|
||||
obs = self._env.step(action)
|
||||
obs[self._key] = self._env.render('rgb_array')
|
||||
return obs
|
||||
|
||||
def reset(self):
|
||||
obs = self._env.reset()
|
||||
obs[self._key] = self._env.render('rgb_array')
|
||||
return obs
|
||||
|
||||
|
||||
class Async:
|
||||
|
||||
# Message types for communication via the pipe.
|
||||
_ACCESS = 1
|
||||
_CALL = 2
|
||||
_RESULT = 3
|
||||
_CLOSE = 4
|
||||
_EXCEPTION = 5
|
||||
|
||||
def __init__(self, constructor, strategy='thread'):
|
||||
self._pickled_ctor = cloudpickle.dumps(constructor)
|
||||
if strategy == 'process':
|
||||
import multiprocessing as mp
|
||||
context = mp.get_context('spawn')
|
||||
elif strategy == 'thread':
|
||||
import multiprocessing.dummy as context
|
||||
else:
|
||||
raise NotImplementedError(strategy)
|
||||
self._strategy = strategy
|
||||
self._conn, conn = context.Pipe()
|
||||
self._process = context.Process(target=self._worker, args=(conn,))
|
||||
atexit.register(self.close)
|
||||
self._process.start()
|
||||
self._receive() # Ready.
|
||||
self._obs_space = None
|
||||
self._act_space = None
|
||||
|
||||
def access(self, name):
|
||||
self._conn.send((self._ACCESS, name))
|
||||
return self._receive
|
||||
|
||||
def call(self, name, *args, **kwargs):
|
||||
payload = name, args, kwargs
|
||||
self._conn.send((self._CALL, payload))
|
||||
return self._receive
|
||||
|
||||
def close(self):
|
||||
try:
|
||||
self._conn.send((self._CLOSE, None))
|
||||
self._conn.close()
|
||||
except IOError:
|
||||
pass # The connection was already closed.
|
||||
self._process.join(5)
|
||||
|
||||
@property
|
||||
def obs_space(self):
|
||||
if not self._obs_space:
|
||||
self._obs_space = self.access('obs_space')()
|
||||
return self._obs_space
|
||||
|
||||
@property
|
||||
def act_space(self):
|
||||
if not self._act_space:
|
||||
self._act_space = self.access('act_space')()
|
||||
return self._act_space
|
||||
|
||||
def step(self, action, blocking=False):
|
||||
promise = self.call('step', action)
|
||||
if blocking:
|
||||
return promise()
|
||||
else:
|
||||
return promise
|
||||
|
||||
def reset(self, blocking=False):
|
||||
promise = self.call('reset')
|
||||
if blocking:
|
||||
return promise()
|
||||
else:
|
||||
return promise
|
||||
|
||||
def _receive(self):
|
||||
try:
|
||||
message, payload = self._conn.recv()
|
||||
except (OSError, EOFError):
|
||||
raise RuntimeError('Lost connection to environment worker.')
|
||||
# Re-raise exceptions in the main process.
|
||||
if message == self._EXCEPTION:
|
||||
stacktrace = payload
|
||||
raise Exception(stacktrace)
|
||||
if message == self._RESULT:
|
||||
return payload
|
||||
raise KeyError('Received message of unexpected type {}'.format(message))
|
||||
|
||||
def _worker(self, conn):
|
||||
try:
|
||||
ctor = cloudpickle.loads(self._pickled_ctor)
|
||||
env = ctor()
|
||||
conn.send((self._RESULT, None)) # Ready.
|
||||
while True:
|
||||
try:
|
||||
# Only block for short times to have keyboard exceptions be raised.
|
||||
if not conn.poll(0.1):
|
||||
continue
|
||||
message, payload = conn.recv()
|
||||
except (EOFError, KeyboardInterrupt):
|
||||
break
|
||||
if message == self._ACCESS:
|
||||
name = payload
|
||||
result = getattr(env, name)
|
||||
conn.send((self._RESULT, result))
|
||||
continue
|
||||
if message == self._CALL:
|
||||
name, args, kwargs = payload
|
||||
result = getattr(env, name)(*args, **kwargs)
|
||||
conn.send((self._RESULT, result))
|
||||
continue
|
||||
if message == self._CLOSE:
|
||||
break
|
||||
raise KeyError('Received message of unknown type {}'.format(message))
|
||||
except Exception:
|
||||
stacktrace = ''.join(traceback.format_exception(*sys.exc_info()))
|
||||
print('Error in environment process: {}'.format(stacktrace))
|
||||
conn.send((self._EXCEPTION, stacktrace))
|
||||
finally:
|
||||
try:
|
||||
conn.close()
|
||||
except IOError:
|
||||
pass # The connection was already closed.
|
||||
|
@ -96,7 +96,6 @@ class TimeLimit:
|
||||
def step(self, action):
|
||||
assert self._step is not None, "Must reset environment."
|
||||
obs, reward, done, info = self._env.step(action)
|
||||
# teets = self._env.step(action)
|
||||
self._step += 1
|
||||
if self._step >= self._duration:
|
||||
done = True
|
||||
@ -151,6 +150,41 @@ class OneHotAction:
|
||||
space.discrete = True
|
||||
return space
|
||||
|
||||
def step(self, action):
|
||||
index = np.argmax(action).astype(int)
|
||||
reference = np.zeros_like(action)
|
||||
reference[index] = 1
|
||||
if not np.allclose(reference, action):
|
||||
raise ValueError(f"Invalid one-hot action:\n{action}")
|
||||
return self._env.step(index)
|
||||
|
||||
def reset(self):
|
||||
return self._env.reset()
|
||||
|
||||
def _sample_action(self):
|
||||
actions = self._env.action_space.n
|
||||
index = self._random.randint(0, actions)
|
||||
reference = np.zeros(actions, dtype=np.float32)
|
||||
reference[index] = 1.0
|
||||
return reference
|
||||
|
||||
class OneHotAction2:
|
||||
def __init__(self, env):
|
||||
assert isinstance(env.action_space, gym.spaces.Discrete)
|
||||
self._env = env
|
||||
self._random = np.random.RandomState()
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
shape = (self._env.action_space.n,)
|
||||
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
|
||||
space.sample = self._sample_action
|
||||
space.discrete = True
|
||||
return space
|
||||
|
||||
def step(self, action):
|
||||
index = np.argmax(action).astype(int)
|
||||
reference = np.zeros_like(action)
|
||||
@ -169,7 +203,6 @@ class OneHotAction:
|
||||
reference[index] = 1.0
|
||||
return reference
|
||||
|
||||
|
||||
class RewardObs:
|
||||
def __init__(self, env):
|
||||
self._env = env
|
||||
|
Loading…
x
Reference in New Issue
Block a user