# 1. Test setup: # docker run -it --rm --gpus all pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime nvidia-smi # # If the above does not work, try adding the --privileged flag # and changing the command to `sh -c 'ldconfig -v && nvidia-smi'`. # # 2. Start training: # docker build -f Dockerfile -t img . && \ # docker run -it --rm --gpus all -v $PWD:/workspace img \ # sh xvfb_run.sh python3 dreamer.py \ # --configs dmc_vision --task dmc_walker_walk \ # --logdir "./logdir/dmc_walker_walk" # # 3. See results: # tensorboard --logdir ~/logdir # # 4. To set up Atari or Minecraft environments, please check the scripts located in "env/setup_scripts". # System FROM pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime ARG DEBIAN_FRONTEND=noninteractive ENV TZ=America/San_Francisco ENV PYTHONUNBUFFERED 1 ENV PIP_DISABLE_PIP_VERSION_CHECK 1 ENV PIP_NO_CACHE_DIR 1 RUN apt-get update && apt-get install -y \ vim libgl1-mesa-glx libosmesa6 \ wget unrar cmake g++ libgl1-mesa-dev \ libx11-6 openjdk-8-jdk x11-xserver-utils xvfb \ && apt-get clean RUN pip3 install --upgrade pip # Envs ENV NUMBA_CACHE_DIR=/tmp WORKDIR /workspace COPY requirements.txt . # Install requiremqnts RUN pip3 install -r requirements.txt