# 1. Test setup: # docker run -it --rm --gpus all pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime nvidia-smi # # If the above does not work, try adding the --privileged flag # and changing the command to `sh -c 'ldconfig -v && nvidia-smi'`. # # 2. Start training: # docker build -f Dockerfile -t img . && \ # docker run -it --rm --gpus all -v $PWD:/workspace img \ # sh xvfb_run.sh python3 dreamer.py \ # --logdir "./logdir/dmc_walker_walk" \ # --configs dmc_vision --task dmc_walker_walk # # 3. See results: # tensorboard --logdir ~/logdir # System FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime ARG DEBIAN_FRONTEND=noninteractive ENV TZ=America/San_Francisco ENV PYTHONUNBUFFERED 1 ENV PIP_DISABLE_PIP_VERSION_CHECK 1 ENV PIP_NO_CACHE_DIR 1 RUN apt-get update && apt-get install -y \ vim libglew2.1 libgl1-mesa-glx libosmesa6 \ wget unrar cmake g++ libgl1-mesa-dev \ libx11-6 openjdk-8-jdk x11-xserver-utils xvfb \ && apt-get clean RUN pip3 install --upgrade pip # Envs ENV NUMBA_CACHE_DIR=/tmp # dmc setup RUN pip3 install tensorboard RUN pip3 install gym==0.19.0 RUN pip3 install dm_control RUN pip3 install moviepy # crafter setup RUN pip3 install crafter # atari setup RUN pip3 install atari-py==0.2.9 RUN pip3 install opencv-python==4.7.0.72 RUN mkdir roms && cd roms RUN wget -L -nv http://www.atarimania.com/roms/Roms.rar RUN unrar x -o+ Roms.rar RUN python3 -m atari_py.import_roms ROMS RUN cd .. && rm -rf roms # memorymaze setup RUN pip3 install memory_maze==1.0.3 # minecraft setup RUN pip3 install minerl==0.4.4 RUN pip3 install numpy==1.21.0