# dreamerv3-torch Pytorch implementation of [Mastering Diverse Domains through World Models](https://arxiv.org/abs/2301.04104v1). ![results](https://user-images.githubusercontent.com/70328564/226332682-acaef8b5-d825-4266-b4ea-6ce4b169a3a2.png) ## Instructions Get dependencies: ``` pip install -r requirements.txt ``` Train the agent: ``` python3 dreamer.py --configs defaults --logdir $ABSOLUTEPATH_TO_SAVE_LOG ``` Monitor results: ``` tensorboard --logdir $ABSOLUTEPATH_TO_SAVE_LOG ``` ## ToDo - [x] Prototyping - [x] Modify implementation details based on the author's implementation - [ ] Evaluate on visual DMC suite - [ ] Add state input capability and evaluate on Proprio Control Suite environment - [ ] Add model size options and evaluate on environments which requires that (like Minecraft) - [ ] etc. ## Acknowledgments This code is heavily inspired by the following works: - danijar's Dreamer-v3 jax implementation: https://github.com/danijar/dreamerv3 - danijar's Dreamer-v2 tensorflow implementation: https://github.com/danijar/dreamerv2 - jsikyoon's Dreamer-v2 pytorch implementation: https://github.com/jsikyoon/dreamer-torch - RajGhugare19's Dreamer-v2 pytorch implementation: https://github.com/RajGhugare19/dreamerv2 - denisyarats's DrQ-v2 original implementation: https://github.com/facebookresearch/drqv2