import datetime import io import json import pathlib import pickle import re import time import uuid import numpy as np import torch from torch import nn from torch.nn import functional as F from torch import distributions as torchd from torch.utils.data import Dataset from torch.utils.tensorboard import SummaryWriter to_np = lambda x: x.detach().cpu().numpy() def symlog(x): return torch.sign(x) * torch.log(torch.abs(x) + 1.0) def symexp(x): return torch.sign(x) * (torch.exp(torch.abs(x)) - 1.0) class RequiresGrad: def __init__(self, model): self._model = model def __enter__(self): self._model.requires_grad_(requires_grad=True) def __exit__(self, *args): self._model.requires_grad_(requires_grad=False) class TimeRecording: def __init__(self, comment): self._comment = comment def __enter__(self): self._st = torch.cuda.Event(enable_timing=True) self._nd = torch.cuda.Event(enable_timing=True) self._st.record() def __exit__(self, *args): self._nd.record() torch.cuda.synchronize() print(self._comment, self._st.elapsed_time(self._nd)/1000) class Logger: def __init__(self, logdir, step): self._logdir = logdir self._writer = SummaryWriter(log_dir=str(logdir), max_queue=1000) self._last_step = None self._last_time = None self._scalars = {} self._images = {} self._videos = {} self.step = step def scalar(self, name, value): self._scalars[name] = float(value) def image(self, name, value): self._images[name] = np.array(value) def video(self, name, value): self._videos[name] = np.array(value) def write(self, fps=False): scalars = list(self._scalars.items()) if fps: scalars.append(('fps', self._compute_fps(self.step))) print(f'[{self.step}]', ' / '.join(f'{k} {v:.1f}' for k, v in scalars)) with (self._logdir / 'metrics.jsonl').open('a') as f: f.write(json.dumps({'step': self.step, ** dict(scalars)}) + '\n') for name, value in scalars: self._writer.add_scalar('scalars/' + name, value, self.step) for name, value in self._images.items(): self._writer.add_image(name, value, self.step) for name, value in self._videos.items(): name = name if isinstance(name, str) else name.decode('utf-8') if np.issubdtype(value.dtype, np.floating): value = np.clip(255 * value, 0, 255).astype(np.uint8) B, T, H, W, C = value.shape value = value.transpose(1, 4, 2, 0, 3).reshape((1, T, C, H, B*W)) self._writer.add_video(name, value, self.step, 16) self._writer.flush() self._scalars = {} self._images = {} self._videos = {} def _compute_fps(self, step): if self._last_step is None: self._last_time = time.time() self._last_step = step return 0 steps = step - self._last_step duration = time.time() - self._last_time self._last_time += duration self._last_step = step return steps / duration def offline_scalar(self, name, value, step): self._writer.add_scalar('scalars/'+name, value, step) def offline_video(self, name, value, step): if np.issubdtype(value.dtype, np.floating): value = np.clip(255 * value, 0, 255).astype(np.uint8) B, T, H, W, C = value.shape value = value.transpose(1, 4, 2, 0, 3).reshape((1, T, C, H, B*W)) self._writer.add_video(name, value, step, 16) def simulate(agent, envs, steps=0, episodes=0, state=None): # Initialize or unpack simulation state. if state is None: step, episode = 0, 0 done = np.ones(len(envs), np.bool) length = np.zeros(len(envs), np.int32) obs = [None] * len(envs) agent_state = None reward = [0]*len(envs) else: step, episode, done, length, obs, agent_state, reward = state while (steps and step < steps) or (episodes and episode < episodes): # Reset envs if necessary. if done.any(): indices = [index for index, d in enumerate(done) if d] results = [envs[i].reset() for i in indices] for index, result in zip(indices, results): obs[index] = result reward = [reward[i]*(1-done[i]) for i in range(len(envs))] # Step agents. obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]} action, agent_state = agent(obs, done, agent_state, reward) if isinstance(action, dict): action = [ {k: np.array(action[k][i].detach().cpu()) for k in action} for i in range(len(envs))] else: action = np.array(action) assert len(action) == len(envs) # Step envs. results = [e.step(a) for e, a in zip(envs, action)] obs, reward, done = zip(*[p[:3] for p in results]) obs = list(obs) reward = list(reward) done = np.stack(done) episode += int(done.sum()) length += 1 step += (done * length).sum() length *= (1 - done) return (step - steps, episode - episodes, done, length, obs, agent_state, reward) def save_episodes(directory, episodes): directory = pathlib.Path(directory).expanduser() directory.mkdir(parents=True, exist_ok=True) timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S') filenames = [] for episode in episodes: identifier = str(uuid.uuid4().hex) length = len(episode['reward']) filename = directory / f'{timestamp}-{identifier}-{length}.npz' with io.BytesIO() as f1: np.savez_compressed(f1, **episode) f1.seek(0) with filename.open('wb') as f2: f2.write(f1.read()) filenames.append(filename) return filenames def from_generator(generator, batch_size): while True: batch = [] for _ in range(batch_size): batch.append(next(generator)) data = {} for key in batch[0].keys(): data[key] = [] for i in range(batch_size): data[key].append(batch[i][key]) data[key] = np.stack(data[key], 0) yield data def sample_episodes(episodes, length=None, balance=False, seed=0): random = np.random.RandomState(seed) while True: episode = random.choice(list(episodes.values())) if length: total = len(next(iter(episode.values()))) available = total - length if available < 1: print(f'Skipped short episode of length {available}.') continue if balance: index = min(random.randint(0, total), available) else: index = int(random.randint(0, available + 1)) episode = {k: v[index: index + length] for k, v in episode.items()} yield episode def load_episodes(directory, limit=None, reverse=True): directory = pathlib.Path(directory).expanduser() episodes = {} total = 0 if reverse: for filename in reversed(sorted(directory.glob('*.npz'))): try: with filename.open('rb') as f: episode = np.load(f) episode = {k: episode[k] for k in episode.keys()} except Exception as e: print(f'Could not load episode: {e}') continue episodes[str(filename)] = episode total += len(episode['reward']) - 1 if limit and total >= limit: break else: for filename in sorted(directory.glob('*.npz')): try: with filename.open('rb') as f: episode = np.load(f) episode = {k: episode[k] for k in episode.keys()} except Exception as e: print(f'Could not load episode: {e}') continue episodes[str(filename)] = episode total += len(episode['reward']) - 1 if limit and total >= limit: break return episodes class SampleDist: def __init__(self, dist, samples=100): self._dist = dist self._samples = samples @property def name(self): return 'SampleDist' def __getattr__(self, name): return getattr(self._dist, name) def mean(self): samples = self._dist.sample(self._samples) return torch.mean(samples, 0) def mode(self): sample = self._dist.sample(self._samples) logprob = self._dist.log_prob(sample) return sample[torch.argmax(logprob)][0] def entropy(self): sample = self._dist.sample(self._samples) logprob = self.log_prob(sample) return -torch.mean(logprob, 0) class OneHotDist(torchd.one_hot_categorical.OneHotCategorical): def __init__(self, logits=None, probs=None, unimix_ratio=0.0): if logits is not None and unimix_ratio > 0.0: probs = F.softmax(logits, dim=-1) probs = probs * (1.0-unimix_ratio) + unimix_ratio / probs.shape[-1] logits = torch.log(probs) super().__init__(logits=logits, probs=None) else: super().__init__(logits=logits, probs=probs) def mode(self): _mode = F.one_hot(torch.argmax(super().logits, axis=-1), super().logits.shape[-1]) return _mode.detach() + super().logits - super().logits.detach() def sample(self, sample_shape=(), seed=None): if seed is not None: raise ValueError('need to check') sample = super().sample(sample_shape) probs = super().probs while len(probs.shape) < len(sample.shape): probs = probs[None] sample += probs - probs.detach() return sample class TwoHotDistSymlog(): def __init__(self, logits=None, low=-20.0, high=20.0, device='cuda'): self.logits = logits self.probs = torch.softmax(logits, -1) self.buckets = torch.linspace(low, high, steps=255).to(device) self.width = (self.buckets[-1] - self.buckets[0]) / 255 def mean(self): print("mean called") _mode = self.probs * self.buckets return symexp(torch.sum(_mode, dim=-1, keepdim=True)) def mode(self): _mode = self.probs * self.buckets return symexp(torch.sum(_mode, dim=-1, keepdim=True)) # Inside OneHotCategorical, log_prob is calculated using only max element in targets def log_prob(self, x): x = symlog(x) # x(time, batch, 1) below = torch.sum((self.buckets <= x[..., None]).to(torch.int32), dim=-1) -1 above = len(self.buckets) - torch.sum((self.buckets > x[..., None]).to(torch.int32), dim=-1) below = torch.clip(below, 0, len(self.buckets)-1) above = torch.clip(above, 0, len(self.buckets)-1) equal = (below == above) dist_to_below = torch.where(equal, 1, torch.abs(self.buckets[below] - x)) dist_to_above = torch.where(equal, 1, torch.abs(self.buckets[above] - x)) total = dist_to_below + dist_to_above weight_below = dist_to_above / total weight_above = dist_to_below / total target = ( F.one_hot(below, num_classes=len(self.buckets)) * weight_below[..., None] + F.one_hot(above, num_classes=len(self.buckets)) * weight_above[..., None]) log_pred = self.logits - torch.logsumexp(self.logits, -1, keepdim=True) target = target.squeeze(-2) return (target * log_pred).sum(-1) def log_prob_target(self, target): log_pred = super().logits - torch.logsumexp(super().logits, -1, keepdim=True) return (target * log_pred).sum(-1) class SymlogDist(): def __init__(self, mode, dist='mse', agg='sum', tol=1e-8, dim_to_reduce=[-1, -2, -3]): self._mode = mode self._dist = dist self._agg = agg self._tol = tol self._dim_to_reduce = dim_to_reduce def mode(self): return symexp(self._mode) def mean(self): return symexp(self._mode) def log_prob(self, value): assert self._mode.shape == value.shape if self._dist == 'mse': distance = (self._mode - symlog(value)) ** 2.0 distance = torch.where(distance < self._tol, 0, distance) elif self._dist == 'abs': distance = torch.abs(self._mode - symlog(value)) distance = torch.where(distance < self._tol, 0, distance) else: raise NotImplementedError(self._dist) if self._agg == 'mean': loss = distance.mean(self._dim_to_reduce) elif self._agg == 'sum': loss = distance.sum(self._dim_to_reduce) else: raise NotImplementedError(self._agg) return -loss class ContDist: def __init__(self, dist=None): super().__init__() self._dist = dist self.mean = dist.mean def __getattr__(self, name): return getattr(self._dist, name) def entropy(self): return self._dist.entropy() def mode(self): return self._dist.mean def sample(self, sample_shape=()): return self._dist.rsample(sample_shape) def log_prob(self, x): return self._dist.log_prob(x) class Bernoulli: def __init__(self, dist=None): super().__init__() self._dist = dist self.mean = dist.mean def __getattr__(self, name): return getattr(self._dist, name) def entropy(self): return self._dist.entropy() def mode(self): _mode = torch.round(self._dist.mean) return _mode.detach() +self._dist.mean - self._dist.mean.detach() def sample(self, sample_shape=()): return self._dist.rsample(sample_shape) def log_prob(self, x): _logits = self._dist.base_dist.logits log_probs0 = -F.softplus(_logits) log_probs1 = -F.softplus(-_logits) return log_probs0 * (1-x) + log_probs1 * x class UnnormalizedHuber(torchd.normal.Normal): def __init__(self, loc, scale, threshold=1, **kwargs): super().__init__(loc, scale, **kwargs) self._threshold = threshold def log_prob(self, event): return -(torch.sqrt( (event - self.mean) ** 2 + self._threshold ** 2) - self._threshold) def mode(self): return self.mean class SafeTruncatedNormal(torchd.normal.Normal): def __init__(self, loc, scale, low, high, clip=1e-6, mult=1): super().__init__(loc, scale) self._low = low self._high = high self._clip = clip self._mult = mult def sample(self, sample_shape): event = super().sample(sample_shape) if self._clip: clipped = torch.clip(event, self._low + self._clip, self._high - self._clip) event = event - event.detach() + clipped.detach() if self._mult: event *= self._mult return event class TanhBijector(torchd.Transform): def __init__(self, validate_args=False, name='tanh'): super().__init__() def _forward(self, x): return torch.tanh(x) def _inverse(self, y): y = torch.where( (torch.abs(y) <= 1.), torch.clamp(y, -0.99999997, 0.99999997), y) y = torch.atanh(y) return y def _forward_log_det_jacobian(self, x): log2 = torch.math.log(2.0) return 2.0 * (log2 - x - torch.softplus(-2.0 * x)) def static_scan_for_lambda_return(fn, inputs, start): last = start indices = range(inputs[0].shape[0]) indices = reversed(indices) flag = True for index in indices: # (inputs, pcont) -> (inputs[index], pcont[index]) inp = lambda x: (_input[x] for _input in inputs) last = fn(last, *inp(index)) if flag: outputs = last flag = False else: outputs = torch.cat([outputs, last], dim=-1) outputs = torch.reshape(outputs, [outputs.shape[0], outputs.shape[1], 1]) outputs = torch.flip(outputs, [1]) outputs = torch.unbind(outputs, dim=0) return outputs def lambda_return( reward, value, pcont, bootstrap, lambda_, axis): # Setting lambda=1 gives a discounted Monte Carlo return. # Setting lambda=0 gives a fixed 1-step return. #assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape) assert len(reward.shape) == len(value.shape), (reward.shape, value.shape) if isinstance(pcont, (int, float)): pcont = pcont * torch.ones_like(reward) dims = list(range(len(reward.shape))) dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:] if axis != 0: reward = reward.permute(dims) value = value.permute(dims) pcont = pcont.permute(dims) if bootstrap is None: bootstrap = torch.zeros_like(value[-1]) next_values = torch.cat([value[1:], bootstrap[None]], 0) inputs = reward + pcont * next_values * (1 - lambda_) #returns = static_scan( # lambda agg, cur0, cur1: cur0 + cur1 * lambda_ * agg, # (inputs, pcont), bootstrap, reverse=True) # reimplement to optimize performance returns = static_scan_for_lambda_return( lambda agg, cur0, cur1: cur0 + cur1 * lambda_ * agg, (inputs, pcont), bootstrap) if axis != 0: returns = returns.permute(dims) return returns class Optimizer(): def __init__( self, name, parameters, lr, eps=1e-4, clip=None, wd=None, wd_pattern=r'.*', opt='adam', use_amp=False): assert 0 <= wd < 1 assert not clip or 1 <= clip self._name = name self._parameters = parameters self._clip = clip self._wd = wd self._wd_pattern = wd_pattern self._opt = { 'adam': lambda: torch.optim.Adam(parameters, lr=lr, eps=eps), 'nadam': lambda: NotImplemented( f'{config.opt} is not implemented'), 'adamax': lambda: torch.optim.Adamax(parameters, lr=lr, eps=eps), 'sgd': lambda: torch.optim.SGD(parameters, lr=lr), 'momentum': lambda: torch.optim.SGD(parameters, lr=lr, momentum=0.9), }[opt]() self._scaler = torch.cuda.amp.GradScaler(enabled=use_amp) def __call__(self, loss, params, retain_graph=False): assert len(loss.shape) == 0, loss.shape metrics = {} metrics[f'{self._name}_loss'] = loss.detach().cpu().numpy() self._scaler.scale(loss).backward() self._scaler.unscale_(self._opt) #loss.backward(retain_graph=retain_graph) norm = torch.nn.utils.clip_grad_norm_(params, self._clip) if self._wd: self._apply_weight_decay(params) self._scaler.step(self._opt) self._scaler.update() #self._opt.step() self._opt.zero_grad() metrics[f'{self._name}_grad_norm'] = norm.item() return metrics def _apply_weight_decay(self, varibs): nontrivial = (self._wd_pattern != r'.*') if nontrivial: raise NotImplementedError for var in varibs: var.data = (1 - self._wd) * var.data def args_type(default): def parse_string(x): if default is None: return x if isinstance(default, bool): return bool(['False', 'True'].index(x)) if isinstance(default, int): return float(x) if ('e' in x or '.' in x) else int(x) if isinstance(default, (list, tuple)): return tuple(args_type(default[0])(y) for y in x.split(',')) return type(default)(x) def parse_object(x): if isinstance(default, (list, tuple)): return tuple(x) return x return lambda x: parse_string(x) if isinstance(x, str) else parse_object(x) def static_scan(fn, inputs, start): last = start indices = range(inputs[0].shape[0]) flag = True for index in indices: inp = lambda x: (_input[x] for _input in inputs) last = fn(last, *inp(index)) if flag: if type(last) == type({}): outputs = {key: value.clone().unsqueeze(0) for key, value in last.items()} else: outputs = [] for _last in last: if type(_last) == type({}): outputs.append({key: value.clone().unsqueeze(0) for key, value in _last.items()}) else: outputs.append(_last.clone().unsqueeze(0)) flag = False else: if type(last) == type({}): for key in last.keys(): outputs[key] = torch.cat([outputs[key], last[key].unsqueeze(0)], dim=0) else: for j in range(len(outputs)): if type(last[j]) == type({}): for key in last[j].keys(): outputs[j][key] = torch.cat([outputs[j][key], last[j][key].unsqueeze(0)], dim=0) else: outputs[j] = torch.cat([outputs[j], last[j].unsqueeze(0)], dim=0) if type(last) == type({}): outputs = [outputs] return outputs # Original version #def static_scan2(fn, inputs, start, reverse=False): # last = start # outputs = [[] for _ in range(len([start] if type(start)==type({}) else start))] # indices = range(inputs[0].shape[0]) # if reverse: # indices = reversed(indices) # for index in indices: # inp = lambda x: (_input[x] for _input in inputs) # last = fn(last, *inp(index)) # [o.append(l) for o, l in zip(outputs, [last] if type(last)==type({}) else last)] # if reverse: # outputs = [list(reversed(x)) for x in outputs] # res = [[]] * len(outputs) # for i in range(len(outputs)): # if type(outputs[i][0]) == type({}): # _res = {} # for key in outputs[i][0].keys(): # _res[key] = [] # for j in range(len(outputs[i])): # _res[key].append(outputs[i][j][key]) # #_res[key] = torch.stack(_res[key], 0) # _res[key] = faster_stack(_res[key], 0) # else: # _res = outputs[i] # #_res = torch.stack(_res, 0) # _res = faster_stack(_res, 0) # res[i] = _res # return res class Every: def __init__(self, every): self._every = every self._last = None def __call__(self, step): if not self._every: return False if self._last is None: self._last = step return True if step >= self._last + self._every: self._last += self._every return True return False class Once: def __init__(self): self._once = True def __call__(self): if self._once: self._once = False return True return False class Until: def __init__(self, until): self._until = until def __call__(self, step): if not self._until: return True return step < self._until def schedule(string, step): try: return float(string) except ValueError: match = re.match(r'linear\((.+),(.+),(.+)\)', string) if match: initial, final, duration = [float(group) for group in match.groups()] mix = torch.clip(torch.Tensor([step / duration]), 0, 1)[0] return (1 - mix) * initial + mix * final match = re.match(r'warmup\((.+),(.+)\)', string) if match: warmup, value = [float(group) for group in match.groups()] scale = torch.clip(step / warmup, 0, 1) return scale * value match = re.match(r'exp\((.+),(.+),(.+)\)', string) if match: initial, final, halflife = [float(group) for group in match.groups()] return (initial - final) * 0.5 ** (step / halflife) + final match = re.match(r'horizon\((.+),(.+),(.+)\)', string) if match: initial, final, duration = [float(group) for group in match.groups()] mix = torch.clip(step / duration, 0, 1) horizon = (1 - mix) * initial + mix * final return 1 - 1 / horizon raise NotImplementedError(string) def weight_init(m): if isinstance(m, nn.Linear): in_num = m.in_features out_num = m.out_features denoms = (in_num + out_num) / 2.0 scale = 1.0 / denoms std = np.sqrt(scale) / 0.87962566103423978 nn.init.trunc_normal_(m.weight.data, mean=0.0, std=std, a=- 2.0, b=2.0) if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): space = m.kernel_size[0] * m.kernel_size[1] in_num = space * m.in_channels out_num = space * m.out_channels denoms = (in_num + out_num) / 2.0 scale = 1.0 / denoms std = np.sqrt(scale) / 0.87962566103423978 nn.init.trunc_normal_(m.weight.data, mean=0.0, std=std, a=- 2.0, b=2.0) if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) elif isinstance(m, nn.LayerNorm): m.weight.data.fill_(1.0) if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) def uniform_weight_init(given_scale): def f(m): if isinstance(m, nn.Linear): in_num = m.in_features out_num = m.out_features denoms = (in_num + out_num) / 2.0 scale = given_scale / denoms limit = np.sqrt(3 * scale) nn.init.uniform_(m.weight.data, a=-limit, b=limit) if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) elif isinstance(m, nn.LayerNorm): m.weight.data.fill_(1.0) if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) return f def tensorstats(tensor, prefix=None): metrics = { 'mean': to_np(torch.mean(tensor)), 'std': to_np(torch.std(tensor)), 'min': to_np(torch.min(tensor)), 'max': to_np(torch.max(tensor)), } if prefix: metrics = {f'{prefix}_{k}': v for k, v in metrics.items()} return metrics