import argparse import functools import os import pathlib import sys os.environ["MUJOCO_GL"] = "osmesa" import numpy as np import ruamel.yaml as yaml sys.path.append(str(pathlib.Path(__file__).parent)) import exploration as expl import models import tools import envs.wrappers as wrappers from parallel import Parallel, Damy import torch from torch import nn from torch import distributions as torchd to_np = lambda x: x.detach().cpu().numpy() class Dreamer(nn.Module): def __init__(self, obs_space, act_space, config, logger, dataset): super(Dreamer, self).__init__() self._config = config self._logger = logger self._should_log = tools.Every(config.log_every) batch_steps = config.batch_size * config.batch_length self._should_train = tools.Every(batch_steps / config.train_ratio) self._should_pretrain = tools.Once() self._should_reset = tools.Every(config.reset_every) self._should_expl = tools.Until(int(config.expl_until / config.action_repeat)) self._metrics = {} # this is update step self._step = logger.step // config.action_repeat self._update_count = 0 self._dataset = dataset self._wm = models.WorldModel(obs_space, act_space, self._step, config) self._task_behavior = models.ImagBehavior(config, self._wm) if ( config.compile and os.name != "nt" ): # compilation is not supported on windows self._wm = torch.compile(self._wm) self._task_behavior = torch.compile(self._task_behavior) reward = lambda f, s, a: self._wm.heads["reward"](f).mean() self._expl_behavior = dict( greedy=lambda: self._task_behavior, random=lambda: expl.Random(config, act_space), plan2explore=lambda: expl.Plan2Explore(config, self._wm, reward), )[config.expl_behavior]().to(self._config.device) def __call__(self, obs, reset, state=None, training=True): step = self._step if training: steps = ( self._config.pretrain if self._should_pretrain() else self._should_train(step) ) for _ in range(steps): self._train(next(self._dataset)) self._update_count += 1 self._metrics["update_count"] = self._update_count if self._should_log(step): for name, values in self._metrics.items(): self._logger.scalar(name, float(np.mean(values))) self._metrics[name] = [] if self._config.video_pred_log: openl = self._wm.video_pred(next(self._dataset)) self._logger.video("train_openl", to_np(openl)) self._logger.write(fps=True) policy_output, state = self._policy(obs, state, training) if training: self._step += len(reset) self._logger.step = self._config.action_repeat * self._step return policy_output, state def _policy(self, obs, state, training): if state is None: latent = action = None else: latent, action = state obs = self._wm.preprocess(obs) embed = self._wm.encoder(obs) latent, _ = self._wm.dynamics.obs_step(latent, action, embed, obs["is_first"]) if self._config.eval_state_mean: latent["stoch"] = latent["mean"] feat = self._wm.dynamics.get_feat(latent) if not training: actor = self._task_behavior.actor(feat) action = actor.mode() elif self._should_expl(self._step): actor = self._expl_behavior.actor(feat) action = actor.sample() else: actor = self._task_behavior.actor(feat) action = actor.sample() logprob = actor.log_prob(action) latent = {k: v.detach() for k, v in latent.items()} action = action.detach() if self._config.actor["dist"] == "onehot_gumble": action = torch.one_hot( torch.argmax(action, dim=-1), self._config.num_actions ) policy_output = {"action": action, "logprob": logprob} state = (latent, action) return policy_output, state def _train(self, data): metrics = {} post, context, mets = self._wm._train(data) metrics.update(mets) start = post reward = lambda f, s, a: self._wm.heads["reward"]( self._wm.dynamics.get_feat(s) ).mode() metrics.update(self._task_behavior._train(start, reward)[-1]) if self._config.expl_behavior != "greedy": mets = self._expl_behavior.train(start, context, data)[-1] metrics.update({"expl_" + key: value for key, value in mets.items()}) for name, value in metrics.items(): if not name in self._metrics.keys(): self._metrics[name] = [value] else: self._metrics[name].append(value) def count_steps(folder): return sum(int(str(n).split("-")[-1][:-4]) - 1 for n in folder.glob("*.npz")) def make_dataset(episodes, config): generator = tools.sample_episodes(episodes, config.batch_length) dataset = tools.from_generator(generator, config.batch_size) return dataset def make_env(config, mode, id): suite, task = config.task.split("_", 1) if suite == "dmc": import envs.dmc as dmc env = dmc.DeepMindControl( task, config.action_repeat, config.size, seed=config.seed + id ) env = wrappers.NormalizeActions(env) elif suite == "atari": import envs.atari as atari env = atari.Atari( task, config.action_repeat, config.size, gray=config.grayscale, noops=config.noops, lives=config.lives, sticky=config.stickey, actions=config.actions, resize=config.resize, seed=config.seed + id, ) env = wrappers.OneHotAction(env) elif suite == "dmlab": import envs.dmlab as dmlab env = dmlab.DeepMindLabyrinth( task, mode if "train" in mode else "test", config.action_repeat, seed=config.seed + id, ) env = wrappers.OneHotAction(env) elif suite == "memorymaze": from envs.memorymaze import MemoryMaze env = MemoryMaze(task, seed=config.seed + id) env = wrappers.OneHotAction(env) elif suite == "crafter": import envs.crafter as crafter env = crafter.Crafter(task, config.size, seed=config.seed + id) env = wrappers.OneHotAction(env) elif suite == "minecraft": import envs.minecraft as minecraft env = minecraft.make_env(task, size=config.size, break_speed=config.break_speed) env = wrappers.OneHotAction(env) else: raise NotImplementedError(suite) env = wrappers.TimeLimit(env, config.time_limit) env = wrappers.SelectAction(env, key="action") env = wrappers.UUID(env) if suite == "minecraft": env = wrappers.RewardObs(env) return env def main(config): tools.set_seed_everywhere(config.seed) if config.deterministic_run: tools.enable_deterministic_run() logdir = pathlib.Path(config.logdir).expanduser() config.traindir = config.traindir or logdir / "train_eps" config.evaldir = config.evaldir or logdir / "eval_eps" config.steps //= config.action_repeat config.eval_every //= config.action_repeat config.log_every //= config.action_repeat config.time_limit //= config.action_repeat print("Logdir", logdir) logdir.mkdir(parents=True, exist_ok=True) config.traindir.mkdir(parents=True, exist_ok=True) config.evaldir.mkdir(parents=True, exist_ok=True) step = count_steps(config.traindir) # step in logger is environmental step logger = tools.Logger(logdir, config.action_repeat * step) print("Create envs.") if config.offline_traindir: directory = config.offline_traindir.format(**vars(config)) else: directory = config.traindir train_eps = tools.load_episodes(directory, limit=config.dataset_size) if config.offline_evaldir: directory = config.offline_evaldir.format(**vars(config)) else: directory = config.evaldir eval_eps = tools.load_episodes(directory, limit=1) make = lambda mode, id: make_env(config, mode, id) train_envs = [make("train", i) for i in range(config.envs)] eval_envs = [make("eval", i) for i in range(config.envs)] if config.parallel: train_envs = [Parallel(env, "process") for env in train_envs] eval_envs = [Parallel(env, "process") for env in eval_envs] else: train_envs = [Damy(env) for env in train_envs] eval_envs = [Damy(env) for env in eval_envs] acts = train_envs[0].action_space print("Action Space", acts) config.num_actions = acts.n if hasattr(acts, "n") else acts.shape[0] state = None if not config.offline_traindir: prefill = max(0, config.prefill - count_steps(config.traindir)) print(f"Prefill dataset ({prefill} steps).") if hasattr(acts, "discrete"): random_actor = tools.OneHotDist( torch.zeros(config.num_actions).repeat(config.envs, 1) ) else: random_actor = torchd.independent.Independent( torchd.uniform.Uniform( torch.tensor(acts.low).repeat(config.envs, 1), torch.tensor(acts.high).repeat(config.envs, 1), ), 1, ) def random_agent(o, d, s): action = random_actor.sample() logprob = random_actor.log_prob(action) return {"action": action, "logprob": logprob}, None state = tools.simulate( random_agent, train_envs, train_eps, config.traindir, logger, limit=config.dataset_size, steps=prefill, ) logger.step += prefill * config.action_repeat print(f"Logger: ({logger.step} steps).") print("Simulate agent.") train_dataset = make_dataset(train_eps, config) eval_dataset = make_dataset(eval_eps, config) agent = Dreamer( train_envs[0].observation_space, train_envs[0].action_space, config, logger, train_dataset, ).to(config.device) agent.requires_grad_(requires_grad=False) if (logdir / "latest.pt").exists(): checkpoint = torch.load(logdir / "latest.pt") agent.load_state_dict(checkpoint["agent_state_dict"]) tools.recursively_load_optim_state_dict(agent, checkpoint["optims_state_dict"]) agent._should_pretrain._once = False # make sure eval will be executed once after config.steps while agent._step < config.steps + config.eval_every: logger.write() if config.eval_episode_num > 0: print("Start evaluation.") eval_policy = functools.partial(agent, training=False) tools.simulate( eval_policy, eval_envs, eval_eps, config.evaldir, logger, is_eval=True, episodes=config.eval_episode_num, ) if config.video_pred_log: video_pred = agent._wm.video_pred(next(eval_dataset)) logger.video("eval_openl", to_np(video_pred)) print("Start training.") state = tools.simulate( agent, train_envs, train_eps, config.traindir, logger, limit=config.dataset_size, steps=config.eval_every, state=state, ) items_to_save = { "agent_state_dict": agent.state_dict(), "optims_state_dict": tools.recursively_collect_optim_state_dict(agent), } torch.save(items_to_save, logdir / "latest.pt") for env in train_envs + eval_envs: try: env.close() except Exception: pass if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--configs", nargs="+") args, remaining = parser.parse_known_args() configs = yaml.safe_load( (pathlib.Path(sys.argv[0]).parent / "configs.yaml").read_text() ) def recursive_update(base, update): for key, value in update.items(): if isinstance(value, dict) and key in base: recursive_update(base[key], value) else: base[key] = value name_list = ["defaults", *args.configs] if args.configs else ["defaults"] defaults = {} for name in name_list: recursive_update(defaults, configs[name]) parser = argparse.ArgumentParser() for key, value in sorted(defaults.items(), key=lambda x: x[0]): arg_type = tools.args_type(value) parser.add_argument(f"--{key}", type=arg_type, default=arg_type(value)) main(parser.parse_args(remaining))