# dreamerv3-torch Pytorch implementation of [Mastering Diverse Domains through World Models](https://arxiv.org/abs/2301.04104v1). ![1](https://user-images.githubusercontent.com/70328564/227377956-4a0d7e48-22fb-4f44-aa10-e5878a5ef901.png) ## Instructions Get dependencies: ``` pip install -r requirements.txt ``` Train the agent on Walker Walk in Vision DMC: ``` python3 dreamer.py --configs defaults --task dmc_walker_walk --logdir ~/dreamerv3-torch/logdir/dmc_walker_walk ``` Train the agent on Alien in Atari 100K: ``` python3 dreamer.py --configs defaults atari --task atari_alien --logdir ~/dreamerv3-torch/logdir/atari_alien ``` Monitor results: ``` tensorboard --logdir ~/dreamerv3-torch/logdir ``` ## ToDo - [x] Prototyping - [x] Modify implementation details based on the author's implementation - [x] Evaluate on DMC vision - [ ] Evaluate on Atari 100K - [ ] Add state input capability - [ ] Evaluate on DMC Proprio - [ ] etc. ## Acknowledgments This code is heavily inspired by the following works: - danijar's Dreamer-v3 jax implementation: https://github.com/danijar/dreamerv3 - danijar's Dreamer-v2 tensorflow implementation: https://github.com/danijar/dreamerv2 - jsikyoon's Dreamer-v2 pytorch implementation: https://github.com/jsikyoon/dreamer-torch - RajGhugare19's Dreamer-v2 pytorch implementation: https://github.com/RajGhugare19/dreamerv2 - denisyarats's DrQ-v2 original implementation: https://github.com/facebookresearch/drqv2