import torch from torch import nn from torch import distributions as torchd import models import networks import tools class Random(nn.Module): def __init__(self, config): self._config = config def actor(self, feat): shape = feat.shape[:-1] + [self._config.num_actions] if self._config.actor_dist == "onehot": return tools.OneHotDist(torch.zeros(shape)) else: ones = torch.ones(shape) return tools.ContDist(torchd.uniform.Uniform(-ones, ones)) def train(self, start, context): return None, {} # class Plan2Explore(tools.Module): class Plan2Explore(nn.Module): def __init__(self, config, world_model, reward=None): self._config = config self._reward = reward self._behavior = models.ImagBehavior(config, world_model) self.actor = self._behavior.actor stoch_size = config.dyn_stoch if config.dyn_discrete: stoch_size *= config.dyn_discrete size = { "embed": 32 * config.cnn_depth, "stoch": stoch_size, "deter": config.dyn_deter, "feat": config.dyn_stoch + config.dyn_deter, }[self._config.disag_target] kw = dict( inp_dim=config.dyn_stoch, # pytorch version shape=size, layers=config.disag_layers, units=config.disag_units, act=config.act, ) self._networks = [networks.DenseHead(**kw) for _ in range(config.disag_models)] self._opt = tools.optimizer( config.opt, self.parameters(), config.model_lr, config.opt_eps, config.weight_decay, ) # self._opt = tools.Optimizer( # 'ensemble', config.model_lr, config.opt_eps, config.grad_clip, # config.weight_decay, opt=config.opt) def train(self, start, context, data): metrics = {} stoch = start["stoch"] if self._config.dyn_discrete: stoch = tf.reshape( stoch, stoch.shape[:-2] + (stoch.shape[-2] * stoch.shape[-1]) ) target = { "embed": context["embed"], "stoch": stoch, "deter": start["deter"], "feat": context["feat"], }[self._config.disag_target] inputs = context["feat"] if self._config.disag_action_cond: inputs = tf.concat([inputs, data["action"]], -1) metrics.update(self._train_ensemble(inputs, target)) metrics.update(self._behavior.train(start, self._intrinsic_reward)[-1]) return None, metrics def _intrinsic_reward(self, feat, state, action): inputs = feat if self._config.disag_action_cond: inputs = tf.concat([inputs, action], -1) preds = [head(inputs, tf.float32).mean() for head in self._networks] disag = tf.reduce_mean(tf.math.reduce_std(preds, 0), -1) if self._config.disag_log: disag = tf.math.log(disag) reward = self._config.expl_intr_scale * disag if self._config.expl_extr_scale: reward += tf.cast( self._config.expl_extr_scale * self._reward(feat, state, action), tf.float32, ) return reward def _train_ensemble(self, inputs, targets): if self._config.disag_offset: targets = targets[:, self._config.disag_offset :] inputs = inputs[:, : -self._config.disag_offset] targets = tf.stop_gradient(targets) inputs = tf.stop_gradient(inputs) with tf.GradientTape() as tape: preds = [head(inputs) for head in self._networks] likes = [tf.reduce_mean(pred.log_prob(targets)) for pred in preds] loss = -tf.cast(tf.reduce_sum(likes), tf.float32) metrics = self._opt(tape, loss, self._networks) return metrics