136 lines
4.9 KiB
Python
136 lines
4.9 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch import distributions as torchd
|
|
|
|
import models
|
|
import networks
|
|
import tools
|
|
|
|
|
|
class Random(nn.Module):
|
|
def __init__(self, config, act_space):
|
|
super(Random, self).__init__()
|
|
self._config = config
|
|
self._act_space = act_space
|
|
|
|
def actor(self, feat):
|
|
if self._config.actor["dist"] == "onehot":
|
|
return tools.OneHotDist(
|
|
torch.zeros(
|
|
self._config.num_actions, device=self._config.device
|
|
).repeat(self._config.envs, 1)
|
|
)
|
|
else:
|
|
return torchd.independent.Independent(
|
|
torchd.uniform.Uniform(
|
|
torch.tensor(
|
|
self._act_space.low, device=self._config.device
|
|
).repeat(self._config.envs, 1),
|
|
torch.tensor(
|
|
self._act_space.high, device=self._config.device
|
|
).repeat(self._config.envs, 1),
|
|
),
|
|
1,
|
|
)
|
|
|
|
def train(self, start, context, data):
|
|
return None, {}
|
|
|
|
|
|
class Plan2Explore(nn.Module):
|
|
def __init__(self, config, world_model, reward):
|
|
super(Plan2Explore, self).__init__()
|
|
self._config = config
|
|
self._use_amp = True if config.precision == 16 else False
|
|
self._reward = reward
|
|
self._behavior = models.ImagBehavior(config, world_model)
|
|
self.actor = self._behavior.actor
|
|
if config.dyn_discrete:
|
|
feat_size = config.dyn_stoch * config.dyn_discrete + config.dyn_deter
|
|
stoch = config.dyn_stoch * config.dyn_discrete
|
|
else:
|
|
feat_size = config.dyn_stoch + config.dyn_deter
|
|
stoch = config.dyn_stoch
|
|
size = {
|
|
"embed": world_model.embed_size,
|
|
"stoch": stoch,
|
|
"deter": config.dyn_deter,
|
|
"feat": config.dyn_stoch + config.dyn_deter,
|
|
}[self._config.disag_target]
|
|
kw = dict(
|
|
inp_dim=feat_size
|
|
+ (
|
|
config.num_actions if config.disag_action_cond else 0
|
|
), # pytorch version
|
|
shape=size,
|
|
layers=config.disag_layers,
|
|
units=config.disag_units,
|
|
act=config.act,
|
|
)
|
|
self._networks = nn.ModuleList(
|
|
[networks.MLP(**kw) for _ in range(config.disag_models)]
|
|
)
|
|
kw = dict(wd=config.weight_decay, opt=config.opt, use_amp=self._use_amp)
|
|
self._expl_opt = tools.Optimizer(
|
|
"explorer",
|
|
self._networks.parameters(),
|
|
config.model_lr,
|
|
config.opt_eps,
|
|
config.grad_clip,
|
|
**kw
|
|
)
|
|
|
|
def train(self, start, context, data):
|
|
with tools.RequiresGrad(self._networks):
|
|
metrics = {}
|
|
stoch = start["stoch"]
|
|
if self._config.dyn_discrete:
|
|
stoch = torch.reshape(
|
|
stoch, (stoch.shape[:-2] + ((stoch.shape[-2] * stoch.shape[-1]),))
|
|
)
|
|
target = {
|
|
"embed": context["embed"],
|
|
"stoch": stoch,
|
|
"deter": start["deter"],
|
|
"feat": context["feat"],
|
|
}[self._config.disag_target]
|
|
inputs = context["feat"]
|
|
if self._config.disag_action_cond:
|
|
inputs = torch.concat(
|
|
[inputs, torch.tensor(data["action"], device=self._config.device)],
|
|
-1,
|
|
)
|
|
metrics.update(self._train_ensemble(inputs, target))
|
|
metrics.update(self._behavior._train(start, self._intrinsic_reward)[-1])
|
|
return None, metrics
|
|
|
|
def _intrinsic_reward(self, feat, state, action):
|
|
inputs = feat
|
|
if self._config.disag_action_cond:
|
|
inputs = torch.concat([inputs, action], -1)
|
|
preds = torch.cat(
|
|
[head(inputs, torch.float32).mode()[None] for head in self._networks], 0
|
|
)
|
|
disag = torch.mean(torch.std(preds, 0), -1)[..., None]
|
|
if self._config.disag_log:
|
|
disag = torch.log(disag)
|
|
reward = self._config.expl_intr_scale * disag
|
|
if self._config.expl_extr_scale:
|
|
reward += self._config.expl_extr_scale * self._reward(feat, state, action)
|
|
return reward
|
|
|
|
def _train_ensemble(self, inputs, targets):
|
|
with torch.cuda.amp.autocast(self._use_amp):
|
|
if self._config.disag_offset:
|
|
targets = targets[:, self._config.disag_offset :]
|
|
inputs = inputs[:, : -self._config.disag_offset]
|
|
targets = targets.detach()
|
|
inputs = inputs.detach()
|
|
preds = [head(inputs) for head in self._networks]
|
|
likes = torch.cat(
|
|
[torch.mean(pred.log_prob(targets))[None] for pred in preds], 0
|
|
)
|
|
loss = -torch.mean(likes)
|
|
metrics = self._expl_opt(loss, self._networks.parameters())
|
|
return metrics
|