dreamerv3-torch/tools.py
2024-09-24 00:16:12 +09:00

1002 lines
33 KiB
Python

import datetime
import collections
import io
import os
import json
import pathlib
import re
import time
import random
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch import distributions as torchd
from torch.utils.tensorboard import SummaryWriter
to_np = lambda x: x.detach().cpu().numpy()
def symlog(x):
return torch.sign(x) * torch.log(torch.abs(x) + 1.0)
def symexp(x):
return torch.sign(x) * (torch.exp(torch.abs(x)) - 1.0)
class RequiresGrad:
def __init__(self, model):
self._model = model
def __enter__(self):
self._model.requires_grad_(requires_grad=True)
def __exit__(self, *args):
self._model.requires_grad_(requires_grad=False)
class TimeRecording:
def __init__(self, comment):
self._comment = comment
def __enter__(self):
self._st = torch.cuda.Event(enable_timing=True)
self._nd = torch.cuda.Event(enable_timing=True)
self._st.record()
def __exit__(self, *args):
self._nd.record()
torch.cuda.synchronize()
print(self._comment, self._st.elapsed_time(self._nd) / 1000)
class Logger:
def __init__(self, logdir, step):
self._logdir = logdir
self._writer = SummaryWriter(log_dir=str(logdir), max_queue=1000)
self._last_step = None
self._last_time = None
self._scalars = {}
self._images = {}
self._videos = {}
self.step = step
def scalar(self, name, value):
self._scalars[name] = float(value)
def image(self, name, value):
self._images[name] = np.array(value)
def video(self, name, value):
self._videos[name] = np.array(value)
def write(self, fps=False, step=False):
if not step:
step = self.step
scalars = list(self._scalars.items())
if fps:
scalars.append(("fps", self._compute_fps(step)))
print(f"[{step}]", " / ".join(f"{k} {v:.1f}" for k, v in scalars))
with (self._logdir / "metrics.jsonl").open("a") as f:
f.write(json.dumps({"step": step, **dict(scalars)}) + "\n")
for name, value in scalars:
if "/" not in name:
self._writer.add_scalar("scalars/" + name, value, step)
else:
self._writer.add_scalar(name, value, step)
for name, value in self._images.items():
self._writer.add_image(name, value, step)
for name, value in self._videos.items():
name = name if isinstance(name, str) else name.decode("utf-8")
if np.issubdtype(value.dtype, np.floating):
value = np.clip(255 * value, 0, 255).astype(np.uint8)
B, T, H, W, C = value.shape
value = value.transpose(1, 4, 2, 0, 3).reshape((1, T, C, H, B * W))
self._writer.add_video(name, value, step, 16)
self._writer.flush()
self._scalars = {}
self._images = {}
self._videos = {}
def _compute_fps(self, step):
if self._last_step is None:
self._last_time = time.time()
self._last_step = step
return 0
steps = step - self._last_step
duration = time.time() - self._last_time
self._last_time += duration
self._last_step = step
return steps / duration
def offline_scalar(self, name, value, step):
self._writer.add_scalar("scalars/" + name, value, step)
def offline_video(self, name, value, step):
if np.issubdtype(value.dtype, np.floating):
value = np.clip(255 * value, 0, 255).astype(np.uint8)
B, T, H, W, C = value.shape
value = value.transpose(1, 4, 2, 0, 3).reshape((1, T, C, H, B * W))
self._writer.add_video(name, value, step, 16)
def simulate(
agent,
envs,
cache,
directory,
logger,
is_eval=False,
limit=None,
steps=0,
episodes=0,
state=None,
):
# initialize or unpack simulation state
if state is None:
step, episode = 0, 0
done = np.ones(len(envs), bool)
length = np.zeros(len(envs), np.int32)
obs = [None] * len(envs)
agent_state = None
reward = [0] * len(envs)
else:
step, episode, done, length, obs, agent_state, reward = state
while (steps and step < steps) or (episodes and episode < episodes):
# reset envs if necessary
if done.any():
indices = [index for index, d in enumerate(done) if d]
results = [envs[i].reset() for i in indices]
results = [r() for r in results]
for index, result in zip(indices, results):
t = result.copy()
t = {k: convert(v) for k, v in t.items()}
# action will be added to transition in add_to_cache
t["reward"] = 0.0
t["discount"] = 1.0
# initial state should be added to cache
add_to_cache(cache, envs[index].id, t)
# replace obs with done by initial state
obs[index] = result
# step agents
obs = {k: np.stack([o[k] for o in obs]) for k in obs[0] if "log_" not in k}
action, agent_state = agent(obs, done, agent_state)
if isinstance(action, dict):
action = [
{k: np.array(action[k][i].detach().cpu()) for k in action}
for i in range(len(envs))
]
else:
action = np.array(action)
assert len(action) == len(envs)
# step envs
results = [e.step(a) for e, a in zip(envs, action)]
results = [r() for r in results]
obs, reward, done = zip(*[p[:3] for p in results])
obs = list(obs)
reward = list(reward)
done = np.stack(done)
episode += int(done.sum())
length += 1
step += len(envs)
length *= 1 - done
# add to cache
for a, result, env in zip(action, results, envs):
o, r, d, info = result
o = {k: convert(v) for k, v in o.items()}
transition = o.copy()
if isinstance(a, dict):
transition.update(a)
else:
transition["action"] = a
transition["reward"] = r
transition["discount"] = info.get("discount", np.array(1 - float(d)))
add_to_cache(cache, env.id, transition)
if done.any():
indices = [index for index, d in enumerate(done) if d]
# logging for done episode
for i in indices:
save_episodes(directory, {envs[i].id: cache[envs[i].id]})
length = len(cache[envs[i].id]["reward"]) - 1
score = float(np.array(cache[envs[i].id]["reward"]).sum())
video = cache[envs[i].id]["image"]
# record logs given from environments
for key in list(cache[envs[i].id].keys()):
if "log_" in key:
logger.scalar(
key, float(np.array(cache[envs[i].id][key]).sum())
)
# log items won't be used later
cache[envs[i].id].pop(key)
if not is_eval:
step_in_dataset = erase_over_episodes(cache, limit)
logger.scalar(f"dataset_size", step_in_dataset)
logger.scalar(f"train_return", score)
logger.scalar(f"train_length", length)
logger.scalar(f"train_episodes", len(cache))
logger.write(step=logger.step)
else:
if not "eval_lengths" in locals():
eval_lengths = []
eval_scores = []
eval_done = False
# start counting scores for evaluation
eval_scores.append(score)
eval_lengths.append(length)
score = sum(eval_scores) / len(eval_scores)
length = sum(eval_lengths) / len(eval_lengths)
logger.video(f"eval_policy", np.array(video)[None])
if len(eval_scores) >= episodes and not eval_done:
logger.scalar(f"eval_return", score)
logger.scalar(f"eval_length", length)
logger.scalar(f"eval_episodes", len(eval_scores))
logger.write(step=logger.step)
eval_done = True
if is_eval:
# keep only last item for saving memory. this cache is used for video_pred later
while len(cache) > 1:
# FIFO
cache.popitem(last=False)
return (step - steps, episode - episodes, done, length, obs, agent_state, reward)
def add_to_cache(cache, id, transition):
if id not in cache:
cache[id] = dict()
for key, val in transition.items():
cache[id][key] = [convert(val)]
else:
for key, val in transition.items():
if key not in cache[id]:
# fill missing data(action, etc.) at second time
cache[id][key] = [convert(0 * val)]
cache[id][key].append(convert(val))
else:
cache[id][key].append(convert(val))
def erase_over_episodes(cache, dataset_size):
step_in_dataset = 0
for key, ep in reversed(sorted(cache.items(), key=lambda x: x[0])):
if (
not dataset_size
or step_in_dataset + (len(ep["reward"]) - 1) <= dataset_size
):
step_in_dataset += len(ep["reward"]) - 1
else:
del cache[key]
return step_in_dataset
def convert(value, precision=32):
value = np.array(value)
if np.issubdtype(value.dtype, np.floating):
dtype = {16: np.float16, 32: np.float32, 64: np.float64}[precision]
elif np.issubdtype(value.dtype, np.signedinteger):
dtype = {16: np.int16, 32: np.int32, 64: np.int64}[precision]
elif np.issubdtype(value.dtype, np.uint8):
dtype = np.uint8
elif np.issubdtype(value.dtype, bool):
dtype = bool
else:
raise NotImplementedError(value.dtype)
return value.astype(dtype)
def save_episodes(directory, episodes):
directory = pathlib.Path(directory).expanduser()
directory.mkdir(parents=True, exist_ok=True)
for filename, episode in episodes.items():
length = len(episode["reward"])
filename = directory / f"{filename}-{length}.npz"
with io.BytesIO() as f1:
np.savez_compressed(f1, **episode)
f1.seek(0)
with filename.open("wb") as f2:
f2.write(f1.read())
return True
def from_generator(generator, batch_size):
while True:
batch = []
for _ in range(batch_size):
batch.append(next(generator))
data = {}
for key in batch[0].keys():
data[key] = []
for i in range(batch_size):
data[key].append(batch[i][key])
data[key] = np.stack(data[key], 0)
yield data
def sample_episodes(episodes, length, seed=0):
np_random = np.random.RandomState(seed)
while True:
size = 0
ret = None
p = np.array(
[len(next(iter(episode.values()))) for episode in episodes.values()]
)
p = p / np.sum(p)
while size < length:
episode = np_random.choice(list(episodes.values()), p=p)
total = len(next(iter(episode.values())))
# make sure at least one transition included
if total < 2:
continue
if not ret:
index = int(np_random.randint(0, total - 1))
ret = {
k: v[index : min(index + length, total)].copy()
for k, v in episode.items()
if "log_" not in k
}
if "is_first" in ret:
ret["is_first"][0] = True
else:
# 'is_first' comes after 'is_last'
index = 0
possible = length - size
ret = {
k: np.append(
ret[k], v[index : min(index + possible, total)].copy(), axis=0
)
for k, v in episode.items()
if "log_" not in k
}
if "is_first" in ret:
ret["is_first"][size] = True
size = len(next(iter(ret.values())))
yield ret
def load_episodes(directory, limit=None, reverse=True):
directory = pathlib.Path(directory).expanduser()
episodes = collections.OrderedDict()
total = 0
if reverse:
for filename in reversed(sorted(directory.glob("*.npz"))):
try:
with filename.open("rb") as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys()}
except Exception as e:
print(f"Could not load episode: {e}")
continue
# extract only filename without extension
episodes[str(os.path.splitext(os.path.basename(filename))[0])] = episode
total += len(episode["reward"]) - 1
if limit and total >= limit:
break
else:
for filename in sorted(directory.glob("*.npz")):
try:
with filename.open("rb") as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys()}
except Exception as e:
print(f"Could not load episode: {e}")
continue
episodes[str(filename)] = episode
total += len(episode["reward"]) - 1
if limit and total >= limit:
break
return episodes
class SampleDist:
def __init__(self, dist, samples=100):
self._dist = dist
self._samples = samples
@property
def name(self):
return "SampleDist"
def __getattr__(self, name):
return getattr(self._dist, name)
def mean(self):
samples = self._dist.sample(self._samples)
return torch.mean(samples, 0)
def mode(self):
sample = self._dist.sample(self._samples)
logprob = self._dist.log_prob(sample)
return sample[torch.argmax(logprob)][0]
def entropy(self):
sample = self._dist.sample(self._samples)
logprob = self.log_prob(sample)
return -torch.mean(logprob, 0)
class OneHotDist(torchd.one_hot_categorical.OneHotCategorical):
def __init__(self, logits=None, probs=None, unimix_ratio=0.0):
if logits is not None and unimix_ratio > 0.0:
probs = F.softmax(logits, dim=-1)
probs = probs * (1.0 - unimix_ratio) + unimix_ratio / probs.shape[-1]
logits = torch.log(probs)
super().__init__(logits=logits, probs=None)
else:
super().__init__(logits=logits, probs=probs)
def mode(self):
_mode = F.one_hot(
torch.argmax(super().logits, axis=-1), super().logits.shape[-1]
)
return _mode.detach() + super().logits - super().logits.detach()
def sample(self, sample_shape=(), seed=None):
if seed is not None:
raise ValueError("need to check")
sample = super().sample(sample_shape).detach()
probs = super().probs
while len(probs.shape) < len(sample.shape):
probs = probs[None]
sample += probs - probs.detach()
return sample
class DiscDist:
def __init__(
self,
logits,
low=-20.0,
high=20.0,
transfwd=symlog,
transbwd=symexp,
device="cuda",
):
self.logits = logits
self.probs = torch.softmax(logits, -1)
self.buckets = torch.linspace(low, high, steps=255).to(device)
self.width = (self.buckets[-1] - self.buckets[0]) / 255
self.transfwd = transfwd
self.transbwd = transbwd
def mean(self):
_mean = self.probs * self.buckets
return self.transbwd(torch.sum(_mean, dim=-1, keepdim=True))
def mode(self):
_mode = self.probs * self.buckets
return self.transbwd(torch.sum(_mode, dim=-1, keepdim=True))
# Inside OneHotCategorical, log_prob is calculated using only max element in targets
def log_prob(self, x):
x = self.transfwd(x)
# x(time, batch, 1)
below = torch.sum((self.buckets <= x[..., None]).to(torch.int32), dim=-1) - 1
above = len(self.buckets) - torch.sum(
(self.buckets > x[..., None]).to(torch.int32), dim=-1
)
# this is implemented using clip at the original repo as the gradients are not backpropagated for the out of limits.
below = torch.clip(below, 0, len(self.buckets) - 1)
above = torch.clip(above, 0, len(self.buckets) - 1)
equal = below == above
dist_to_below = torch.where(equal, 1, torch.abs(self.buckets[below] - x))
dist_to_above = torch.where(equal, 1, torch.abs(self.buckets[above] - x))
total = dist_to_below + dist_to_above
weight_below = dist_to_above / total
weight_above = dist_to_below / total
target = (
F.one_hot(below, num_classes=len(self.buckets)) * weight_below[..., None]
+ F.one_hot(above, num_classes=len(self.buckets)) * weight_above[..., None]
)
log_pred = self.logits - torch.logsumexp(self.logits, -1, keepdim=True)
target = target.squeeze(-2)
return (target * log_pred).sum(-1)
def log_prob_target(self, target):
log_pred = super().logits - torch.logsumexp(super().logits, -1, keepdim=True)
return (target * log_pred).sum(-1)
class MSEDist:
def __init__(self, mode, agg="sum"):
self._mode = mode
self._agg = agg
def mode(self):
return self._mode
def mean(self):
return self._mode
def log_prob(self, value):
assert self._mode.shape == value.shape, (self._mode.shape, value.shape)
distance = (self._mode - value) ** 2
if self._agg == "mean":
loss = distance.mean(list(range(len(distance.shape)))[2:])
elif self._agg == "sum":
loss = distance.sum(list(range(len(distance.shape)))[2:])
else:
raise NotImplementedError(self._agg)
return -loss
class SymlogDist:
def __init__(self, mode, dist="mse", agg="sum", tol=1e-8):
self._mode = mode
self._dist = dist
self._agg = agg
self._tol = tol
def mode(self):
return symexp(self._mode)
def mean(self):
return symexp(self._mode)
def log_prob(self, value):
assert self._mode.shape == value.shape
if self._dist == "mse":
distance = (self._mode - symlog(value)) ** 2.0
distance = torch.where(distance < self._tol, 0, distance)
elif self._dist == "abs":
distance = torch.abs(self._mode - symlog(value))
distance = torch.where(distance < self._tol, 0, distance)
else:
raise NotImplementedError(self._dist)
if self._agg == "mean":
loss = distance.mean(list(range(len(distance.shape)))[2:])
elif self._agg == "sum":
loss = distance.sum(list(range(len(distance.shape)))[2:])
else:
raise NotImplementedError(self._agg)
return -loss
class ContDist:
def __init__(self, dist=None, absmax=None):
super().__init__()
self._dist = dist
self.mean = dist.mean
self.absmax = absmax
def __getattr__(self, name):
return getattr(self._dist, name)
def entropy(self):
return self._dist.entropy()
def mode(self):
out = self._dist.mean
if self.absmax is not None:
out *= (self.absmax / torch.clip(torch.abs(out), min=self.absmax)).detach()
return out
def sample(self, sample_shape=()):
out = self._dist.rsample(sample_shape)
if self.absmax is not None:
out *= (self.absmax / torch.clip(torch.abs(out), min=self.absmax)).detach()
return out
def log_prob(self, x):
return self._dist.log_prob(x)
class Bernoulli:
def __init__(self, dist=None):
super().__init__()
self._dist = dist
self.mean = dist.mean
def __getattr__(self, name):
return getattr(self._dist, name)
def entropy(self):
return self._dist.entropy()
def mode(self):
_mode = torch.round(self._dist.mean)
return _mode.detach() + self._dist.mean - self._dist.mean.detach()
def sample(self, sample_shape=()):
return self._dist.rsample(sample_shape)
def log_prob(self, x):
_logits = self._dist.base_dist.logits
log_probs0 = -F.softplus(_logits)
log_probs1 = -F.softplus(-_logits)
return torch.sum(log_probs0 * (1 - x) + log_probs1 * x, -1)
class UnnormalizedHuber(torchd.normal.Normal):
def __init__(self, loc, scale, threshold=1, **kwargs):
super().__init__(loc, scale, **kwargs)
self._threshold = threshold
def log_prob(self, event):
return -(
torch.sqrt((event - self.mean) ** 2 + self._threshold**2)
- self._threshold
)
def mode(self):
return self.mean
class SafeTruncatedNormal(torchd.normal.Normal):
def __init__(self, loc, scale, low, high, clip=1e-6, mult=1):
super().__init__(loc, scale)
self._low = low
self._high = high
self._clip = clip
self._mult = mult
def sample(self, sample_shape):
event = super().sample(sample_shape)
if self._clip:
clipped = torch.clip(event, self._low + self._clip, self._high - self._clip)
event = event - event.detach() + clipped.detach()
if self._mult:
event *= self._mult
return event
class TanhBijector(torchd.Transform):
def __init__(self, validate_args=False, name="tanh"):
super().__init__()
def _forward(self, x):
return torch.tanh(x)
def _inverse(self, y):
y = torch.where(
(torch.abs(y) <= 1.0), torch.clamp(y, -0.99999997, 0.99999997), y
)
y = torch.atanh(y)
return y
def _forward_log_det_jacobian(self, x):
log2 = torch.math.log(2.0)
return 2.0 * (log2 - x - torch.softplus(-2.0 * x))
def static_scan_for_lambda_return(fn, inputs, start):
last = start
indices = range(inputs[0].shape[0])
indices = reversed(indices)
flag = True
for index in indices:
# (inputs, pcont) -> (inputs[index], pcont[index])
inp = lambda x: (_input[x] for _input in inputs)
last = fn(last, *inp(index))
if flag:
outputs = last
flag = False
else:
outputs = torch.cat([outputs, last], dim=-1)
outputs = torch.reshape(outputs, [outputs.shape[0], outputs.shape[1], 1])
outputs = torch.flip(outputs, [1])
outputs = torch.unbind(outputs, dim=0)
return outputs
def lambda_return(reward, value, pcont, bootstrap, lambda_, axis):
# Setting lambda=1 gives a discounted Monte Carlo return.
# Setting lambda=0 gives a fixed 1-step return.
# assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape)
assert len(reward.shape) == len(value.shape), (reward.shape, value.shape)
if isinstance(pcont, (int, float)):
pcont = pcont * torch.ones_like(reward)
dims = list(range(len(reward.shape)))
dims = [axis] + dims[1:axis] + [0] + dims[axis + 1 :]
if axis != 0:
reward = reward.permute(dims)
value = value.permute(dims)
pcont = pcont.permute(dims)
if bootstrap is None:
bootstrap = torch.zeros_like(value[-1])
next_values = torch.cat([value[1:], bootstrap[None]], 0)
inputs = reward + pcont * next_values * (1 - lambda_)
# returns = static_scan(
# lambda agg, cur0, cur1: cur0 + cur1 * lambda_ * agg,
# (inputs, pcont), bootstrap, reverse=True)
# reimplement to optimize performance
returns = static_scan_for_lambda_return(
lambda agg, cur0, cur1: cur0 + cur1 * lambda_ * agg, (inputs, pcont), bootstrap
)
if axis != 0:
returns = returns.permute(dims)
return returns
class Optimizer:
def __init__(
self,
name,
parameters,
lr,
eps=1e-4,
clip=None,
wd=None,
wd_pattern=r".*",
opt="adam",
use_amp=False,
):
assert 0 <= wd < 1
assert not clip or 1 <= clip
self._name = name
self._parameters = parameters
self._clip = clip
self._wd = wd
self._wd_pattern = wd_pattern
self._opt = {
"adam": lambda: torch.optim.Adam(parameters, lr=lr, eps=eps),
"nadam": lambda: NotImplemented(f"{opt} is not implemented"),
"adamax": lambda: torch.optim.Adamax(parameters, lr=lr, eps=eps),
"sgd": lambda: torch.optim.SGD(parameters, lr=lr),
"momentum": lambda: torch.optim.SGD(parameters, lr=lr, momentum=0.9),
}[opt]()
self._scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
def __call__(self, loss, params, retain_graph=True):
assert len(loss.shape) == 0, loss.shape
metrics = {}
metrics[f"{self._name}_loss"] = loss.detach().cpu().numpy()
self._opt.zero_grad()
self._scaler.scale(loss).backward(retain_graph=retain_graph)
self._scaler.unscale_(self._opt)
# loss.backward(retain_graph=retain_graph)
norm = torch.nn.utils.clip_grad_norm_(params, self._clip)
if self._wd:
self._apply_weight_decay(params)
self._scaler.step(self._opt)
self._scaler.update()
# self._opt.step()
self._opt.zero_grad()
metrics[f"{self._name}_grad_norm"] = norm.item()
return metrics
def _apply_weight_decay(self, varibs):
nontrivial = self._wd_pattern != r".*"
if nontrivial:
raise NotImplementedError
for var in varibs:
var.data = (1 - self._wd) * var.data
def args_type(default):
def parse_string(x):
if default is None:
return x
if isinstance(default, bool):
return bool(["False", "True"].index(x))
if isinstance(default, int):
return float(x) if ("e" in x or "." in x) else int(x)
if isinstance(default, (list, tuple)):
return tuple(args_type(default[0])(y) for y in x.split(","))
return type(default)(x)
def parse_object(x):
if isinstance(default, (list, tuple)):
return tuple(x)
return x
return lambda x: parse_string(x) if isinstance(x, str) else parse_object(x)
def static_scan(fn, inputs, start):
last = start
indices = range(inputs[0].shape[0])
flag = True
for index in indices:
inp = lambda x: (_input[x] for _input in inputs)
last = fn(last, *inp(index))
if flag:
if type(last) == type({}):
outputs = {
key: value.clone().unsqueeze(0) for key, value in last.items()
}
else:
outputs = []
for _last in last:
if type(_last) == type({}):
outputs.append(
{
key: value.clone().unsqueeze(0)
for key, value in _last.items()
}
)
else:
outputs.append(_last.clone().unsqueeze(0))
flag = False
else:
if type(last) == type({}):
for key in last.keys():
outputs[key] = torch.cat(
[outputs[key], last[key].unsqueeze(0)], dim=0
)
else:
for j in range(len(outputs)):
if type(last[j]) == type({}):
for key in last[j].keys():
outputs[j][key] = torch.cat(
[outputs[j][key], last[j][key].unsqueeze(0)], dim=0
)
else:
outputs[j] = torch.cat(
[outputs[j], last[j].unsqueeze(0)], dim=0
)
if type(last) == type({}):
outputs = [outputs]
return outputs
class Every:
def __init__(self, every):
self._every = every
self._last = None
def __call__(self, step):
if not self._every:
return 0
if self._last is None:
self._last = step
return 1
count = int((step - self._last) / self._every)
self._last += self._every * count
return count
class Once:
def __init__(self):
self._once = True
def __call__(self):
if self._once:
self._once = False
return True
return False
class Until:
def __init__(self, until):
self._until = until
def __call__(self, step):
if not self._until:
return True
return step < self._until
def weight_init(m):
if isinstance(m, nn.Linear):
in_num = m.in_features
out_num = m.out_features
denoms = (in_num + out_num) / 2.0
scale = 1.0 / denoms
std = np.sqrt(scale) / 0.87962566103423978
nn.init.trunc_normal_(
m.weight.data, mean=0.0, std=std, a=-2.0 * std, b=2.0 * std
)
if hasattr(m.bias, "data"):
m.bias.data.fill_(0.0)
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
space = m.kernel_size[0] * m.kernel_size[1]
in_num = space * m.in_channels
out_num = space * m.out_channels
denoms = (in_num + out_num) / 2.0
scale = 1.0 / denoms
std = np.sqrt(scale) / 0.87962566103423978
nn.init.trunc_normal_(
m.weight.data, mean=0.0, std=std, a=-2.0 * std, b=2.0 * std
)
if hasattr(m.bias, "data"):
m.bias.data.fill_(0.0)
elif isinstance(m, nn.LayerNorm):
m.weight.data.fill_(1.0)
if hasattr(m.bias, "data"):
m.bias.data.fill_(0.0)
def uniform_weight_init(given_scale):
def f(m):
if isinstance(m, nn.Linear):
in_num = m.in_features
out_num = m.out_features
denoms = (in_num + out_num) / 2.0
scale = given_scale / denoms
limit = np.sqrt(3 * scale)
nn.init.uniform_(m.weight.data, a=-limit, b=limit)
if hasattr(m.bias, "data"):
m.bias.data.fill_(0.0)
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
space = m.kernel_size[0] * m.kernel_size[1]
in_num = space * m.in_channels
out_num = space * m.out_channels
denoms = (in_num + out_num) / 2.0
scale = given_scale / denoms
limit = np.sqrt(3 * scale)
nn.init.uniform_(m.weight.data, a=-limit, b=limit)
if hasattr(m.bias, "data"):
m.bias.data.fill_(0.0)
elif isinstance(m, nn.LayerNorm):
m.weight.data.fill_(1.0)
if hasattr(m.bias, "data"):
m.bias.data.fill_(0.0)
return f
def tensorstats(tensor, prefix=None):
metrics = {
"mean": to_np(torch.mean(tensor)),
"std": to_np(torch.std(tensor)),
"min": to_np(torch.min(tensor)),
"max": to_np(torch.max(tensor)),
}
if prefix:
metrics = {f"{prefix}_{k}": v for k, v in metrics.items()}
return metrics
def set_seed_everywhere(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def enable_deterministic_run():
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
def recursively_collect_optim_state_dict(
obj, path="", optimizers_state_dicts=None, visited=None
):
if optimizers_state_dicts is None:
optimizers_state_dicts = {}
if visited is None:
visited = set()
# avoid cyclic reference
if id(obj) in visited:
return optimizers_state_dicts
else:
visited.add(id(obj))
attrs = obj.__dict__
if isinstance(obj, torch.nn.Module):
attrs.update(
{k: attr for k, attr in obj.named_modules() if "." not in k and obj != attr}
)
for name, attr in attrs.items():
new_path = path + "." + name if path else name
if isinstance(attr, torch.optim.Optimizer):
optimizers_state_dicts[new_path] = attr.state_dict()
elif hasattr(attr, "__dict__"):
optimizers_state_dicts.update(
recursively_collect_optim_state_dict(
attr, new_path, optimizers_state_dicts, visited
)
)
return optimizers_state_dicts
def recursively_load_optim_state_dict(obj, optimizers_state_dicts):
for path, state_dict in optimizers_state_dicts.items():
keys = path.split(".")
obj_now = obj
for key in keys:
obj_now = getattr(obj_now, key)
obj_now.load_state_dict(state_dict)