2023-10-23 15:45:14 +02:00

140 lines
4.3 KiB
Python

import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.transforms as transforms
import numpy as np
import os
import scipy.stats
from matplotlib.patches import Ellipse
def save_fig(fig, name, dir=f"./{os.path.basename(__file__).split('.py')[0]}"):
fig.tight_layout()
os.makedirs(dir, exist_ok=True)
fig.savefig(f"{dir}/{name}.png")
fig.savefig(f"{dir}/{name}.pdf")
def export_legend(ax, filename="legend.pdf", plot_dir='', ncol=10, linewidth=7):
fig2 = plt.figure()
ax2 = fig2.add_subplot()
ax2.axis('off')
legend = ax2.legend(*ax.get_legend_handles_labels(), frameon=False, loc='lower center', ncol=ncol)
for legobj in legend.legendHandles:
legobj.set_linewidth(linewidth)
fig1 = legend.figure
fig1.canvas.draw()
bbox = legend.get_window_extent().transformed(fig1.dpi_scale_trans.inverted())
fig1.savefig(os.path.join(plot_dir, filename), dpi="figure", bbox_inches=bbox)
def export_legendv2(plot_options_d, filename="legend.pdf", plot_dir='', ncol=10, linewidth=7, ):
fig2 = plt.figure()
ax2 = fig2.add_subplot()
for k, v in plot_options_d.items():
v['linewidth'] = linewidth
ax2.plot([], [], label=k, **v)
ax2.axis('off')
legend = ax2.legend(frameon=False, loc='lower center', ncol=ncol)
#for legobj in legend.legendHandles:
# legobj.set_linewidth(linewidth)
fig1 = legend.figure
fig1.canvas.draw()
bbox = legend.get_window_extent().transformed(fig1.dpi_scale_trans.inverted())
fig1.savefig(os.path.join(plot_dir, filename), dpi="figure", bbox_inches=bbox)
plt.close(fig1)
plt.close(fig2)
def set_small_ticks(ax, fontsize=6, set_minor_ticks=False):
if set_minor_ticks:
ax.tick_params(which='minor', grid_linestyle='--')
else:
ax.get_yaxis().set_tick_params(which='minor', size=0)
ax.get_yaxis().set_tick_params(which='minor', width=0)
for tick in ax.xaxis.get_major_ticks():
tick.label.set_fontsize(fontsize)
for tick in ax.xaxis.get_minor_ticks():
tick.label.set_fontsize(fontsize)
for tick in ax.yaxis.get_major_ticks():
tick.label.set_fontsize(fontsize)
for tick in ax.yaxis.get_minor_ticks():
tick.label.set_fontsize(fontsize)
def remove_borders(ax):
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# ax.spines['bottom'].set_visible(False)
# ax.spines['left'].set_visible(False)
def remove_axes_labels_ticks(ax):
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlabel('')
ax.set_ylabel('')
def confidence_ellipse(x, y, ax, n_std=3.0, facecolor='none', **kwargs):
"""
Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse
"""
if x.size != y.size:
raise ValueError("x and y must be the same size")
cov = np.cov(x, y)
pearson = cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1])
# Using a special case to obtain the eigenvalues of this
# two-dimensionl dataset.
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2,
facecolor=facecolor, **kwargs)
# Calculating the stdandard deviation of x from
# the squareroot of the variance and multiplying
# with the given number of standard deviations.
scale_x = np.sqrt(cov[0, 0]) * n_std
mean_x = np.mean(x)
# calculating the stdandard deviation of y ...
scale_y = np.sqrt(cov[1, 1]) * n_std
mean_y = np.mean(y)
transf = transforms.Affine2D() \
.rotate_deg(45) \
.scale(scale_x, scale_y) \
.translate(mean_x, mean_y)
ellipse.set_transform(transf + ax.transData)
return ax.add_patch(ellipse)
def mean_confidence_interval(data, confidence=0.95, axis=0):
n = data.shape[axis]
m, se = np.mean(data, axis=axis), scipy.stats.sem(data, axis=axis)
h = se * scipy.stats.t.ppf((1 + confidence) / 2., n - 1)
return m, m - h, m + h