mpd-public/mpd/models/layers/equiv_layers.py
2023-10-23 15:45:14 +02:00

367 lines
12 KiB
Python

import torch
import torch.nn as nn
import einops
EPS = 1e-6
def knn(x, k):
inner = -2 * torch.matmul(x.transpose(2, 1), x)
xx = torch.sum(x ** 2, dim=1, keepdim=True)
pairwise_distance = -xx - inner - xx.transpose(2, 1)
idx = pairwise_distance.topk(k=k, dim=-1)[1] # (batch_size, num_points, k)
return idx
def get_graph_feature(x, k=20, idx=None, x_coord=None, device='cpu'):
batch_size = x.size(0)
num_points = x.size(3)
x = x.view(batch_size, -1, num_points)
if idx is None:
if x_coord is not None: # dynamic knn graph
idx = knn(x_coord, k=k) # (batch_size, num_points, k)
else: # fixed knn graph with input point coordinates
idx = knn(x, k=k)
idx_base = torch.arange(0, batch_size, device=device).view(-1, 1, 1) * num_points
idx = idx + idx_base
idx = idx.view(-1)
_, num_dims, _ = x.size()
num_dims = num_dims // 3
x = x.transpose(2,
1).contiguous() # (batch_size, num_points, num_dims) -> (batch_size*num_points, num_dims) # batch_size * num_points * k + range(0, batch_size*num_points)
feature = x.view(batch_size * num_points, -1)[idx, :]
feature = feature.view(batch_size, num_points, k, num_dims, 3)
x = x.view(batch_size, num_points, 1, num_dims, 3).repeat(1, 1, k, 1, 1)
feature = torch.cat((feature - x, x), dim=3).permute(0, 3, 4, 1, 2).contiguous()
return feature
def get_graph_feature_cross(x, k=20, idx=None, device='cpu'):
x = einops.rearrange(x, 'b 1 d n -> b d n')
batch_size = x.size(0)
num_dims = x.size(1)
num_points = x.size(2)
if idx is None:
idx = knn(x, k=k) # (batch_size, num_points, k)
idx_base = einops.rearrange(torch.arange(0, batch_size, device=device), 'b -> b 1 1') * num_points
idx = idx + idx_base
idx = einops.rearrange(idx, 'b n k -> (b n k)')
c = num_dims // 3
x = einops.rearrange(x, 'b d n -> b n d').contiguous()
#x = x.transpose(2,1).contiguous()
feature = einops.rearrange(x, 'b n d -> (b n) d')[idx, :]
#feature = x.view(batch_size * num_points, -1)[idx, :]
feature = feature.view(batch_size, num_points, k, c, 3)
#x = x.view(batch_size, num_points, 1, num_dims, 3).repeat(1, 1, k, 1, 1)
x = einops.repeat(x, 'b n d -> b n k c d', k=k, c=c)
cross = torch.cross(feature, x, dim=-1)
feature = torch.cat((feature - x, x, cross), dim=3)
#feature = feature.permute(0, 3, 4, 1, 2).contiguous()
feature = einops.rearrange(feature, 'b n k c d -> b c d n k').contiguous()
return feature
def get_graph_mean(x, k=20, idx=None):
batch_size = x.size(0)
num_points = x.size(3)
x = x.reshape(batch_size, -1, num_points).contiguous()
if idx is None:
idx = knn(x, k=k) # (batch_size, num_points, k)
device = torch.device('cuda')
idx_base = torch.arange(0, batch_size, device=device).view(-1, 1, 1) * num_points
idx = idx + idx_base
idx = idx.view(-1)
_, num_dims, _ = x.size()
num_dims = num_dims // 3
x = x.transpose(2,
1).contiguous() # (batch_size, num_points, num_dims) -> (batch_size*num_points, num_dims) # batch_size * num_points * k + range(0, batch_size*num_points)
feature = x.view(batch_size * num_points, -1)[idx, :]
feature = feature.view(batch_size, num_points, k, num_dims, 3).mean(2, keepdim=False)
x = x.view(batch_size, num_points, num_dims, 3)
feature = (feature - x).permute(0, 2, 3, 1).contiguous()
return feature
def get_shell_mean_cross(x, k=10, nk=4, idx_all=None):
batch_size = x.size(0)
num_points = x.size(3)
x = x.reshape(batch_size, -1, num_points).contiguous()
if idx_all is None:
idx_all = knn(x, k=nk * k) # (batch_size, num_points, k)
device = torch.device('cuda')
idx_base = torch.arange(0, batch_size, device=device).view(-1, 1, 1) * num_points
idx = []
for i in range(nk):
idx.append(idx_all[:, :, i * k:(i + 1) * k])
idx[i] = idx[i] + idx_base
idx[i] = idx[i].view(-1)
_, num_dims, _ = x.size()
num_dims = num_dims // 3
x = x.transpose(2,
1).contiguous() # (batch_size, num_points, num_dims) -> (batch_size*num_points, num_dims) # batch_size * num_points * k + range(0, batch_size*num_points)
x = x.view(batch_size, num_points, num_dims, 3)
feature = []
for i in range(nk):
feature.append(x.view(batch_size * num_points, -1)[idx[i], :])
feature[i] = feature[i].view(batch_size, num_points, k, num_dims, 3).mean(2, keepdim=False)
feature[i] = feature[i] - x
cross = torch.cross(feature[i], x, dim=3)
feature[i] = torch.cat((feature[i], cross), dim=2)
feature = torch.cat(feature, dim=2).permute(0, 2, 3, 1).contiguous()
return feature
class VNLinear(nn.Module):
def __init__(self, in_channels, out_channels):
super(VNLinear, self).__init__()
self.map_to_feat = nn.Linear(in_channels, out_channels, bias=False)
def forward(self, x):
'''
x: point features of shape [B, N_feat, 3, N_samples, ...]
'''
x_out = self.map_to_feat(x.transpose(1, -1)).transpose(1, -1)
return x_out
class VNLeakyReLU(nn.Module):
def __init__(self, in_channels, share_nonlinearity=False, negative_slope=0.2):
super(VNLeakyReLU, self).__init__()
if share_nonlinearity == True:
self.map_to_dir = nn.Linear(in_channels, 1, bias=False)
else:
self.map_to_dir = nn.Linear(in_channels, in_channels, bias=False)
self.negative_slope = negative_slope
def forward(self, x):
'''
x: point features of shape [B, N_feat, 3, N_samples, ...]
'''
d = self.map_to_dir(x.transpose(1, -1)).transpose(1, -1)
dotprod = (x * d).sum(2, keepdim=True)
mask = (dotprod >= 0).float()
d_norm_sq = (d * d).sum(2, keepdim=True)
x_out = self.negative_slope * x + (1 - self.negative_slope) * (
mask * x + (1 - mask) * (x - (dotprod / (d_norm_sq + EPS)) * d))
return x_out
class VNLinearLeakyReLU(nn.Module):
def __init__(self, in_channels, out_channels, dim=5, share_nonlinearity=False, use_batchnorm=True,
negative_slope=0.2):
super(VNLinearLeakyReLU, self).__init__()
self.dim = dim
self.share_nonlinearity = share_nonlinearity
self.use_batchnorm = use_batchnorm
self.negative_slope = negative_slope
# Conv
self.map_to_feat = nn.Linear(in_channels, out_channels, bias=False)
# BatchNorm
self.use_batchnorm = use_batchnorm
if use_batchnorm == True:
self.batchnorm = VNBatchNorm(out_channels, dim=dim)
# LeakyReLU
if share_nonlinearity == True:
self.map_to_dir = nn.Linear(in_channels, 1, bias=False)
else:
self.map_to_dir = nn.Linear(in_channels, out_channels, bias=False)
self.negative_slope = negative_slope
def forward(self, x):
'''
x: point features of shape [B, N_feat, 3, N_samples, ...]
'''
# Conv
p = self.map_to_feat(x.transpose(1, -1)).transpose(1, -1)
# InstanceNorm
if self.use_batchnorm == True:
p = self.batchnorm(p)
# LeakyReLU
d = self.map_to_dir(x.transpose(1, -1)).transpose(1, -1)
dotprod = (p * d).sum(2, keepdim=True)
mask = (dotprod >= 0).float()
d_norm_sq = (d * d).sum(2, keepdim=True)
x_out = self.negative_slope * p + (1 - self.negative_slope) * (
mask * p + (1 - mask) * (p - (dotprod / (d_norm_sq + EPS)) * d))
return x_out
class VNBatchNorm(nn.Module):
def __init__(self, num_features, dim):
super(VNBatchNorm, self).__init__()
self.dim = dim
if dim == 3 or dim == 4:
self.bn = nn.BatchNorm1d(num_features)
elif dim == 5:
self.bn = nn.BatchNorm2d(num_features)
def forward(self, x):
'''
x: point features of shape [B, N_feat, 3, N_samples, ...]
'''
norm = torch.sqrt((x * x).sum(2))
norm_bn = self.bn(norm)
norm = norm.unsqueeze(2)
norm_bn = norm_bn.unsqueeze(2)
x = x / norm * norm_bn
return x
class VNMaxPool(nn.Module):
def __init__(self, in_channels, share_nonlinearity=False):
super(VNMaxPool, self).__init__()
if share_nonlinearity:
self.map_to_dir = nn.Linear(in_channels, 1, bias=False)
else:
self.map_to_dir = nn.Linear(in_channels, in_channels, bias=False)
def forward(self, x):
'''
x: point features of shape [B, N_feat, 3, N_samples, ...]
'''
d = self.map_to_dir(x.transpose(1, -1)).transpose(1, -1)
dotprod = (x * d).sum(2, keepdim=True)
idx = dotprod.max(dim=-1, keepdim=False)[1]
index_tuple = torch.meshgrid([torch.arange(j) for j in x.size()[:-1]]) + (idx,)
x_max = x[index_tuple]
return x_max
class VNStdFeature(nn.Module):
def __init__(self, in_channels, dim=4, normalize_frame=False, share_nonlinearity=False, use_batchnorm=True):
super(VNStdFeature, self).__init__()
self.dim = dim
self.normalize_frame = normalize_frame
self.share_nonlinearity = share_nonlinearity
self.use_batchnorm = use_batchnorm
self.vn1 = VNLinearLeakyReLU(in_channels, in_channels // 2, dim=dim, share_nonlinearity=share_nonlinearity,
use_batchnorm=use_batchnorm)
self.vn2 = VNLinearLeakyReLU(in_channels // 2, in_channels // 4, dim=dim, share_nonlinearity=share_nonlinearity,
use_batchnorm=use_batchnorm)
if normalize_frame:
self.vn_lin = nn.Linear(in_channels // 4, 2, bias=False)
else:
self.vn_lin = nn.Linear(in_channels // 4, 3, bias=False)
def forward(self, x):
'''
x: point features of shape [B, N_feat, 3, N_samples, ...]
'''
z0 = self.vn1(x)
z0 = self.vn2(z0)
z0 = self.vn_lin(z0.transpose(1, -1)).transpose(1, -1)
if self.normalize_frame:
# make z0 orthogonal. u2 = v2 - proj_u1(v2)
v1 = z0[:, 0, :]
# u1 = F.normalize(v1, dim=1)
v1_norm = torch.sqrt((v1 * v1).sum(1, keepdim=True))
u1 = v1 / (v1_norm + EPS)
v2 = z0[:, 1, :]
v2 = v2 - (v2 * u1).sum(1, keepdim=True) * u1
# u2 = F.normalize(u2, dim=1)
v2_norm = torch.sqrt((v2 * v2).sum(1, keepdim=True))
u2 = v2 / (v2_norm + EPS)
# compute the cross product of the two output vectors
u3 = torch.cross(u1, u2)
z0 = torch.stack([u1, u2, u3], dim=1).transpose(1, 2)
else:
z0 = z0.transpose(1, 2)
if self.dim == 4:
x_std = torch.einsum('bijm,bjkm->bikm', x, z0)
elif self.dim == 3:
x_std = torch.einsum('bij,bjk->bik', x, z0)
elif self.dim == 5:
x_std = torch.einsum('bijmn,bjkmn->bikmn', x, z0)
return x_std, z0
# Resnet Blocks
class VNResnetBlockFC(nn.Module):
''' Fully connected ResNet Block class.
Args:
size_in (int): input dimension
size_out (int): output dimension
size_h (int): hidden dimension
'''
def __init__(self, size_in, size_out=None, size_h=None):
super().__init__()
# Attributes
if size_out is None:
size_out = size_in
if size_h is None:
size_h = min(size_in, size_out)
self.size_in = size_in
self.size_h = size_h
self.size_out = size_out
# Submodules
self.fc_0 = VNLinear(size_in, size_h)
self.fc_1 = VNLinear(size_h, size_out)
self.actvn_0 = VNLeakyReLU(size_in, negative_slope=0.2, share_nonlinearity=False)
self.actvn_1 = VNLeakyReLU(size_h, negative_slope=0.2, share_nonlinearity=False)
if size_in == size_out:
self.shortcut = None
else:
self.shortcut = VNLinear(size_in, size_out)
# Initialization
nn.init.zeros_(self.fc_1.map_to_feat.weight)
def forward(self, x):
net = self.fc_0(self.actvn_0(x))
dx = self.fc_1(self.actvn_1(net))
if self.shortcut is not None:
x_s = self.shortcut(x)
else:
x_s = x
return x_s + dx