Avoid division by 0 by just setting railbutton pressure CD when moving very slow
Note CD really doesn't matter when velocity is 0, since there's no drag force anyway.
This commit is contained in:
parent
769ac69300
commit
206603e865
@ -58,48 +58,56 @@ public class RailButtonCalc extends RocketComponentCalc {
|
||||
final double notchArea = (button.getOuterDiameter() - button.getInnerDiameter()) * button.getInnerHeight();
|
||||
final double refArea = outerArea - notchArea;
|
||||
|
||||
// accumulate Cd contribution from each rail button
|
||||
// accumulate Cd contribution from each rail button. If velocity is 0 just set CDmul to a value previously
|
||||
// competed for velocity MathUtil.EPSILON and skip the loop to avoid division by 0
|
||||
double CDmul = 0.0;
|
||||
for (int i = 0; i < button.getInstanceCount(); i++) {
|
||||
if (conditions.getMach() > MathUtil.EPSILON) {
|
||||
for (int i = 0; i < button.getInstanceCount(); i++) {
|
||||
|
||||
// compute boundary layer height at button location. I can't find a good reference for the
|
||||
// formula, e.g. https://aerospaceengineeringblog.com/boundary-layers/ simply says it's the
|
||||
// "scientific consensus".
|
||||
double x = (button.toAbsolute(instanceOffsets[i]))[0].x; // location of button
|
||||
double rex = calculateReynoldsNumber(x, conditions); // Reynolds number of button location
|
||||
double del = 0.37 * x / Math.pow(rex, 0.2); // Boundary layer thickness
|
||||
// compute boundary layer height at button location. I can't find a good reference for the
|
||||
// formula, e.g. https://aerospaceengineeringblog.com/boundary-layers/ simply says it's the
|
||||
// "scientific consensus".
|
||||
double x = (button.toAbsolute(instanceOffsets[i]))[0].x; // location of button
|
||||
double rex = calculateReynoldsNumber(x, conditions); // Reynolds number of button location
|
||||
double del = 0.37 * x / Math.pow(rex, 0.2); // Boundary layer thickness
|
||||
|
||||
// compute mean airspeed over button
|
||||
// this assumes airspeed changes linearly through boundary layer
|
||||
// and that all parts of the railbutton contribute equally to Cd,
|
||||
// neither of which is true but both are plenty close enough for our purposes
|
||||
// compute mean airspeed over button
|
||||
// this assumes airspeed changes linearly through boundary layer
|
||||
// and that all parts of the railbutton contribute equally to Cd,
|
||||
// neither of which is true but both are plenty close enough for our purposes
|
||||
|
||||
double mach;
|
||||
if (buttonHt > del) {
|
||||
// Case 1: button extends beyond boundary layer
|
||||
// Mean velocity is 1/2 rocket velocity up to limit of boundary layer,
|
||||
// full velocity after that
|
||||
mach = (buttonHt - 0.5*del) * conditions.getMach()/buttonHt;
|
||||
} else {
|
||||
// Case 2: button is entirely within boundary layer
|
||||
mach = MathUtil.map(buttonHt/2.0, 0, del, 0, conditions.getMach());
|
||||
}
|
||||
|
||||
// look up Cd as function of speed. It's pretty constant as a function of Reynolds
|
||||
// number when slow, so we can just use a function of Mach number
|
||||
double cd = MathUtil.interpolate(cdDomain, cdRange, mach);
|
||||
|
||||
// Since later drag force calculations don't consider boundary layer, compute "effective Cd"
|
||||
// based on rocket velocity
|
||||
cd = cd * MathUtil.pow2(mach)/MathUtil.pow2(conditions.getMach());
|
||||
|
||||
// add to CDmul
|
||||
CDmul += cd;
|
||||
|
||||
double mach;
|
||||
if (buttonHt > del) {
|
||||
// Case 1: button extends beyond boundary layer
|
||||
// Mean velocity is 1/2 rocket velocity up to limit of boundary layer,
|
||||
// full velocity after that
|
||||
mach = (buttonHt - 0.5*del) * conditions.getMach()/buttonHt;
|
||||
} else {
|
||||
// Case 2: button is entirely within boundary layer
|
||||
mach = MathUtil.map(buttonHt/2.0, 0, del, 0, conditions.getMach());
|
||||
}
|
||||
|
||||
// look up Cd as function of speed. It's pretty constant as a function of Reynolds
|
||||
// number when slow, so we can just use a function of Mach number
|
||||
double cd = MathUtil.interpolate(cdDomain, cdRange, mach);
|
||||
// since we'll be multiplying by the instance count up in BarrowmanCalculator,
|
||||
// we want to return the mean CD instead of the total
|
||||
CDmul /= button.getInstanceCount();
|
||||
|
||||
// Since later drag force calculations don't consider boundary layer, compute "effective Cd"
|
||||
// based on rocket velocity
|
||||
cd = cd * MathUtil.pow2(mach)/MathUtil.pow2(conditions.getMach());
|
||||
|
||||
// add to CDmul
|
||||
CDmul += cd;
|
||||
}
|
||||
|
||||
// since we'll be multiplying by the instance count up in BarrowmanCalculator,
|
||||
// we want to return the mean CD instead of the total
|
||||
CDmul /= button.getInstanceCount();
|
||||
} else {
|
||||
// value at velocity of MathUtil.EPSILON
|
||||
CDmul = 8.786395072609939E-4;
|
||||
}
|
||||
|
||||
return CDmul * stagnationCD * refArea / conditions.getRefArea();
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user