Commit so I can grab latest changes from unstable
This commit is contained in:
parent
6908bd8e7b
commit
a3aebadcff
@ -14,15 +14,13 @@ public abstract class TubeCalc extends RocketComponentCalc {
|
||||
|
||||
private final static Logger log = LoggerFactory.getLogger(TubeFinSetCalc.class);
|
||||
|
||||
// air density (standard conditions)
|
||||
private final double rho = 1.225; // kg/m^3
|
||||
|
||||
private final Tube tube;
|
||||
private final double diameter;
|
||||
private final double length;
|
||||
protected final double innerArea;
|
||||
private final double totalArea;
|
||||
private final double frontalArea;
|
||||
private final Tube tube;
|
||||
private final double epsilon;
|
||||
|
||||
public TubeCalc(RocketComponent component) {
|
||||
super(component);
|
||||
@ -34,63 +32,49 @@ public abstract class TubeCalc extends RocketComponentCalc {
|
||||
innerArea = Math.PI * MathUtil.pow2(tube.getInnerRadius());
|
||||
totalArea = Math.PI * MathUtil.pow2(tube.getOuterRadius());
|
||||
frontalArea = totalArea - innerArea;
|
||||
epsilon = tube.getFinish().getRoughnessSize(); // roughness; note we don't maintain surface roughness of
|
||||
// interior separately from exterior.
|
||||
}
|
||||
|
||||
@Override
|
||||
public double calculatePressureCD(FlightConditions conditions,
|
||||
double stagnationCD, double baseCD, WarningSet warnings) {
|
||||
|
||||
// These calculations come from a mix of theoretical and empirical
|
||||
// results, and are marked with (t) for theoretical and (e) for empirical.
|
||||
// The theoretical results should not be modified; the empirical can be adjusted
|
||||
// to better simulate real rockets as we get data.
|
||||
|
||||
// For the sources of the empirical formulas, see Carello, Ivanov, and Mazza,
|
||||
// "Pressure drop in pipe lines for compressed air: comparison between experimental
|
||||
// and theoretical analysis", Transactions on Engineering Sciences vol 18,
|
||||
// ISSN 1743-35331998, 1998.
|
||||
|
||||
// For the rockets for which we have data, the effect of the stagnation CD appears to be
|
||||
// overstated. This code multiplies it be a factor of 0.7 to better match experimental
|
||||
// data
|
||||
|
||||
// Need to check for tube inner area 0 in case of rockets using launch lugs with
|
||||
// an inner radius of 0 to emulate rail buttons (or just weird rockets, of course)
|
||||
|
||||
// an inner radius of 0 to emulate rail guides (or just weird rockets, of course)
|
||||
double tubeCD = 0.0;
|
||||
double deltap;
|
||||
if (innerArea > MathUtil.EPSILON) {
|
||||
// Temperature and Pressure
|
||||
final double T = conditions.getAtmosphericConditions().getTemperature();
|
||||
final double P = conditions.getAtmosphericConditions().getPressure();
|
||||
|
||||
// Volume flow rate (t)
|
||||
final double Q = conditions.getVelocity() * innerArea;
|
||||
|
||||
// Air viscosity
|
||||
final double mu = conditions.getAtmosphericConditions().getKinematicViscosity();
|
||||
|
||||
// Air density
|
||||
final double rho = 1.225; // at standard temperature and pressure
|
||||
// Current atmospheric conditions
|
||||
final double p = conditions.getAtmosphericConditions().getPressure();
|
||||
final double t = conditions.getAtmosphericConditions().getTemperature();
|
||||
final double rho = conditions.getAtmosphericConditions().getDensity();
|
||||
final double v = conditions.getVelocity();
|
||||
|
||||
// Reynolds number (note Reynolds number for the interior of a pipe is based on diameter,
|
||||
// not length (t))
|
||||
final double Re = (4.0 * rho * Q) / (Math.PI * diameter * mu);
|
||||
final double Re = v * diameter / conditions.getAtmosphericConditions().getKinematicViscosity();
|
||||
|
||||
// friction coefficient (for smooth tube interior) (e)
|
||||
final double lambda = 1/MathUtil.pow2(2 * Math.log(0.5625 * Math.pow(Re, 0.875)) - 0.8);
|
||||
// friction coefficient using Swamee-Jain equation
|
||||
double f = 0.25/MathUtil.pow2(Math.log10((epsilon / (3.7 * diameter) + 5.74/Math.pow(Re, 0.9))));
|
||||
|
||||
// pressure drop (e)
|
||||
final double P0 = 101325; // standard pressure
|
||||
final double T0 = 273.15; // standard temperature
|
||||
deltap = ((lambda * 8 * length * rho * MathUtil.pow2(Q)) / (MathUtil.pow2(Math.PI) * Math.pow(diameter, 5)) * (T/T0) * (P0/P));
|
||||
} else {
|
||||
deltap = 0.0;
|
||||
// If we're supersonic, apply a correction
|
||||
// if (conditions.getMach() > 1) {
|
||||
// f = f / conditions.getBeta();
|
||||
// }
|
||||
|
||||
// pressure drop using Darcy-Weissbach equation
|
||||
deltap = f * (length * rho * MathUtil.pow2(v)) / (2 * diameter);
|
||||
System.out.println(tube + ", v " + v + ", Re " + Re + ", p " + p + ": " + "deltap " + deltap);
|
||||
|
||||
// drag coefficient of tube interior from pressure drop
|
||||
tubeCD = 2 * (deltap * innerArea) / (rho * MathUtil.pow2(v) * innerArea);
|
||||
}
|
||||
|
||||
// convert to CD and return
|
||||
final double cdpress = 2.0 * deltap / (conditions.getAtmosphericConditions().getDensity() * MathUtil.pow2(conditions.getVelocity()));
|
||||
final double cd = (cdpress * innerArea + 0.43*(stagnationCD + baseCD) * frontalArea)/conditions.getRefArea();
|
||||
|
||||
System.out.println(tube + " tube CD " + tubeCD + ", stagnationCD " + stagnationCD + ", baseCD " + baseCD + ", inner area " + innerArea + ", frontal area " + frontalArea);
|
||||
final double cd = (tubeCD * innerArea + (stagnationCD + baseCD) * frontalArea) / conditions.getRefArea();
|
||||
System.out.println(tube + " cd " + cd);
|
||||
return cd;
|
||||
}
|
||||
}
|
||||
|
@ -26,6 +26,8 @@ public class TubeFinSetCalc extends TubeCalc {
|
||||
private static final double STALL_ANGLE = (20 * Math.PI / 180);
|
||||
private final double[] poly = new double[6];
|
||||
|
||||
private final TubeFinSet tubes;
|
||||
|
||||
// parameters straight from configuration; we'll be grabbing them once
|
||||
// so code is a bit shorter elsewhere
|
||||
private final double bodyRadius;
|
||||
@ -51,7 +53,7 @@ public class TubeFinSetCalc extends TubeCalc {
|
||||
throw new IllegalArgumentException("Illegal component type " + component);
|
||||
}
|
||||
|
||||
final TubeFinSet tubes = (TubeFinSet) component;
|
||||
tubes = (TubeFinSet) component;
|
||||
|
||||
if (tubes.getTubeSeparation() > MathUtil.EPSILON) {
|
||||
geometryWarnings.add(Warning.TUBE_SEPARATION);
|
||||
@ -88,17 +90,19 @@ public class TubeFinSetCalc extends TubeCalc {
|
||||
// Find length of d
|
||||
final double d = Math.sqrt(MathUtil.pow2(bodyRadius + outerRadius) - MathUtil.pow2(outerRadius));
|
||||
|
||||
// Area of diamond consisting of triangle reflected on its hypotenuse
|
||||
// Area of diamond formed by mirroring triangle on its hypotenuse (same area as rectangle
|
||||
// formed by d and outerarea, but it *isn't* that rectangle)
|
||||
double a = d * outerRadius;
|
||||
|
||||
// angle between outerRadius and bodyRadius+outerRadius
|
||||
final double theta1 = Math.acos(outerRadius/(outerRadius + bodyRadius));
|
||||
|
||||
// area of arc from tube fin, doubled so we have area to remove from diamond
|
||||
// area of arc from tube fin, doubled to get both halves of diamond
|
||||
final double a1 = MathUtil.pow2(outerRadius) * theta1;
|
||||
|
||||
// angle between bodyRadius+outerRadius and d
|
||||
final double theta2 = Math.PI/2.0 - theta1;
|
||||
System.out.println("theta2 " + theta2);
|
||||
|
||||
// area of arc from body tube. Doubled so we have area to remove from diamond
|
||||
final double a2 = MathUtil.pow2(bodyRadius) * theta2;
|
||||
@ -113,13 +117,18 @@ public class TubeFinSetCalc extends TubeCalc {
|
||||
// that affects the pressure drop through the tube and so (indirecctly) affects the pressure drag.
|
||||
|
||||
// Area of the outer surface of a tube, not including portion masked by interstice
|
||||
final double outerArea = chord * 2 * (Math.PI - theta1) * outerRadius;
|
||||
final double outerArea = chord * 2.0 * (Math.PI - theta1) * outerRadius;
|
||||
|
||||
// Surface area of the portion of the body tube masked by the tube fins, per tube
|
||||
final BodyTube parent = (BodyTube) tubes.getParent();
|
||||
final double maskedArea = chord * 2.0 * Math.PI * bodyRadius / tubeCount;
|
||||
// Area of inner surface of a tube
|
||||
final double innerArea = chord * 2.0 * Math.PI * innerRadius;
|
||||
|
||||
wettedArea = outerArea - maskedArea;
|
||||
// Surface area of the portion of the body tube masked by the tube fin. We'll subtract it from
|
||||
// the tube fin area rather than go in and change the body tube surface area calculation. If tube
|
||||
// fin and body tube roughness aren't the same this will result in an inaccuracy.
|
||||
final double maskedArea = chord * 2.0 * theta2 * bodyRadius;
|
||||
|
||||
wettedArea = innerArea + outerArea - maskedArea;
|
||||
System.out.println(tubes + " outer " + outerArea + ", masked " + maskedArea);
|
||||
log.debug("wetted area of tube fin " + wettedArea);
|
||||
|
||||
// Precompute most of CNa. Equation comes from Ribner, "The ring airfoil in nonaxial
|
||||
@ -261,6 +270,7 @@ public class TubeFinSetCalc extends TubeCalc {
|
||||
|
||||
@Override
|
||||
public double calculateFrictionCD(FlightConditions conditions, double componentCf, WarningSet warnings) {
|
||||
System.out.println(tubes + "wetted area " + wettedArea);
|
||||
final double frictionCD = componentCf * wettedArea / conditions.getRefArea();
|
||||
|
||||
return frictionCD;
|
||||
@ -271,9 +281,10 @@ public class TubeFinSetCalc extends TubeCalc {
|
||||
double stagnationCD, double baseCD, WarningSet warnings) {
|
||||
|
||||
warnings.addAll(geometryWarnings);
|
||||
System.out.println(tubes + " stag CD " + stagnationCD + ", base CD " + baseCD);
|
||||
|
||||
final double cd = super.calculatePressureCD(conditions, stagnationCD, baseCD, warnings) +
|
||||
(stagnationCD + baseCD) * intersticeArea / conditions.getRefArea();
|
||||
(stagnationCD + baseCD) * intersticeArea / conditions.getRefArea();
|
||||
|
||||
return cd;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user