Merge pull request #1413 from JoePfeiffer/fix-1258

Update tube fin stabililty calculations
This commit is contained in:
Joe Pfeiffer 2022-06-07 15:28:54 -06:00 committed by GitHub
commit ca9241f562
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 65 additions and 452 deletions

View File

@ -1789,7 +1789,6 @@ Warning.TUMBLE_UNDER_THRUST = Stage began to tumble under thrust.
Warning.EVENT_AFTER_LANDING = Flight Event occurred after landing: Warning.EVENT_AFTER_LANDING = Flight Event occurred after landing:
Warning.ZERO_LENGTH_BODY = Zero length bodies may not result in accurate simulations. Warning.ZERO_LENGTH_BODY = Zero length bodies may not result in accurate simulations.
Warning.ZERO_RADIUS_BODY = Zero length bodies may not result in accurate simulations. Warning.ZERO_RADIUS_BODY = Zero length bodies may not result in accurate simulations.
Warning.TUBE_STABILITY = Tube fin stability calculations may not be accurate.
Warning.TUBE_SEPARATION = Space between tube fins may not result in accurate simulations. Warning.TUBE_SEPARATION = Space between tube fins may not result in accurate simulations.
Warning.TUBE_OVERLAP = Overlapping tube fins may not result in accurate simulations. Warning.TUBE_OVERLAP = Overlapping tube fins may not result in accurate simulations.

View File

@ -392,7 +392,6 @@ public abstract class Warning {
public static final Warning ZERO_LENGTH_BODY = new Other(trans.get("Warning.ZERO_LENGTH_BODY")); public static final Warning ZERO_LENGTH_BODY = new Other(trans.get("Warning.ZERO_LENGTH_BODY"));
public static final Warning ZERO_RADIUS_BODY = new Other(trans.get("Warning.ZERO_RADIUS_BODY")); public static final Warning ZERO_RADIUS_BODY = new Other(trans.get("Warning.ZERO_RADIUS_BODY"));
public static final Warning TUBE_STABILITY = new Other(trans.get("Warning.TUBE_STABILITY"));
public static final Warning TUBE_SEPARATION = new Other(trans.get("Warning.TUBE_SEPARATION")); public static final Warning TUBE_SEPARATION = new Other(trans.get("Warning.TUBE_SEPARATION"));
public static final Warning TUBE_OVERLAP = new Other(trans.get("Warning.TUBE_OVERLAP")); public static final Warning TUBE_OVERLAP = new Other(trans.get("Warning.TUBE_OVERLAP"));
} }

View File

@ -26,51 +26,31 @@ import org.slf4j.LoggerFactory;
/** /**
* Preliminary computation of tube fin aerodynamics. * Preliminary computation of tube fin aerodynamics.
* *
* Uses a complete clone of FinSetCalc modelling each tube fin as 3 individual fins. It does not correctly account for
* fin & tube fin interference.
*
* @author kruland
*
*/ */
public class TubeFinSetCalc extends TubeCalc { public class TubeFinSetCalc extends TubeCalc {
private final static Logger log = LoggerFactory.getLogger(TubeFinSetCalc.class); private final static Logger log = LoggerFactory.getLogger(TubeFinSetCalc.class);
final double intersticeArea;
private static final double STALL_ANGLE = (20 * Math.PI / 180); private static final double STALL_ANGLE = (20 * Math.PI / 180);
/** Number of divisions in the fin chords. */
protected static final int DIVISIONS = 48;
protected double macLength = Double.NaN; // MAC length
protected double macLead = Double.NaN; // MAC leading edge position
protected double macSpan = Double.NaN; // MAC spanwise position
protected double finArea = Double.NaN; // Fin area
protected double ar = Double.NaN; // Fin aspect ratio
protected double span = Double.NaN; // Fin span
protected double cosGamma = Double.NaN; // Cosine of midchord sweep angle
protected double cosGammaLead = Double.NaN; // Cosine of leading edge sweep angle
protected double rollSum = Double.NaN; // Roll damping sum term
protected double[] chordLead = new double[DIVISIONS];
protected double[] chordTrail = new double[DIVISIONS];
protected double[] chordLength = new double[DIVISIONS];
protected final WarningSet geometryWarnings = new WarningSet();
private final double[] poly = new double[6]; private final double[] poly = new double[6];
private final double wettedArea; // parameters straight from configuration; we'll be grabbing them once
// so code is a bit shorter elsewhere
private final double thickness;
private final double bodyRadius; private final double bodyRadius;
private final int finCount; private final double chord;
private final double innerRadius;
private final double outerRadius;
private final int tubeCount;
private final double baseRotation; private final double baseRotation;
// at present tubes are only allowed a cant angle of 0
private final double cantAngle; private final double cantAngle;
protected final int interferenceFinCount;
private final FinSet.CrossSection crossSection; // values we can precompute once
private final double ar;
private final double intersticeArea;
private final double wettedArea;
private final double cnaconst;
protected final WarningSet geometryWarnings = new WarningSet();
public TubeFinSetCalc(RocketComponent component) { public TubeFinSetCalc(RocketComponent component) {
super(component); super(component);
@ -79,62 +59,67 @@ public class TubeFinSetCalc extends TubeCalc {
} }
final TubeFinSet tubes = (TubeFinSet) component; final TubeFinSet tubes = (TubeFinSet) component;
final TubeFinSet fin = tubes; // keep this around while we're still leveraging FinSet
geometryWarnings.add(Warning.TUBE_STABILITY);
if (tubes.getTubeSeparation() > MathUtil.EPSILON) { if (tubes.getTubeSeparation() > MathUtil.EPSILON) {
geometryWarnings.add(Warning.TUBE_SEPARATION); geometryWarnings.add(Warning.TUBE_SEPARATION);
} else if (tubes.getTubeSeparation() < -MathUtil.EPSILON) { } else if (tubes.getTubeSeparation() < -MathUtil.EPSILON) {
geometryWarnings.add(Warning.TUBE_OVERLAP); geometryWarnings.add(Warning.TUBE_OVERLAP);
} }
bodyRadius = tubes.getBodyRadius();
chord = tubes.getLength();
innerRadius = tubes.getInnerRadius();
outerRadius = tubes.getOuterRadius();
tubeCount = tubes.getFinCount();
baseRotation = tubes.getBaseRotation();
// at present, tube cant angle can only be 0
cantAngle = 0;
// cantAngle = tubes.getCantAngle();
// precompute geometry. This will be the geometry of a single tube, since BarrowmanCalculator // precompute geometry. This will be the geometry of a single tube, since BarrowmanCalculator
// iterates across them. Doesn't consider interference between them; that should only be relevant for // iterates across them. Doesn't consider interference between them; that should only be relevant for
// fins that are either separated or overlapping. // fins that are either separated or overlapping.
bodyRadius = tubes.getBodyRadius();
// 1. wetted area for friction drag calculation. We don't consider the inner surface of the tube; // aspect ratio.
ar = 2 * innerRadius / chord;
// wetted area for friction drag calculation. We don't consider the inner surface of the tube;
// that affects the pressure drop through the tube and so (indirecctly) affects the pressure drag. // that affects the pressure drop through the tube and so (indirecctly) affects the pressure drag.
// Area of the outer surface of tubes. Since roughly half // Area of the outer surface of tubes. Since roughly half
// of the area is "masked" by the interstices between the tubes and the // of the area is "masked" by the interstices between the tubes and the
// body tube, only consider the other half of the area // body tube, only consider the other half of the area (so only multiplying by pi instead of 2*pi)
final double outerArea = tubes.getLength() * Math.PI * tubes.getOuterRadius(); final double outerArea = chord * Math.PI * outerRadius;
// Surface area of the portion of the body tube masked by the tube fins, per tube // Surface area of the portion of the body tube masked by the tube fins, per tube
final BodyTube parent = (BodyTube) tubes.getParent(); final BodyTube parent = (BodyTube) tubes.getParent();
final double maskedArea = tubes.getLength() * 2.0 * Math.PI * parent.getOuterRadius() / tubes.getFinCount(); final double maskedArea = chord * 2.0 * Math.PI * bodyRadius / tubeCount;
wettedArea = outerArea - maskedArea; wettedArea = outerArea - maskedArea;
log.debug("wetted area of tube fins " + wettedArea); log.debug("wetted area of tube fins " + wettedArea);
// 2. frontal area of interstices between tubes for pressure drag calculation. // frontal area of interstices between tubes for pressure drag calculation.
// We'll treat them as a closed blunt object. // We'll treat them as a closed blunt object.
// area of disk passing through tube fin centers // area of disk passing through tube fin centers
final double tubeDiskArea = Math.PI * MathUtil.pow2(bodyRadius + tubes.getOuterRadius()); final double tubeDiskArea = Math.PI * MathUtil.pow2(bodyRadius + outerRadius);
// half of combined area of tube fin exteriors. Deliberately using the outer radius here since we // half of combined area of tube fin exteriors. Deliberately using the outer radius here since we
// calculate pressure drag from the tube walls in TubeCalc // calculate pressure drag from the tube walls in TubeCalc
final double tubeOuterArea = tubes.getFinCount() * Math.PI * MathUtil.pow2(tubes.getOuterRadius()) / 2.0; final double tubeOuterArea = tubeCount * Math.PI * MathUtil.pow2(outerRadius) / 2.0;
// body tube area // body tube area
final double bodyTubeArea = Math.PI * MathUtil.pow2(bodyRadius); final double bodyTubeArea = Math.PI * MathUtil.pow2(bodyRadius);
// area of an interstice // area of an interstice
intersticeArea = (tubeDiskArea - tubeOuterArea - bodyTubeArea) / tubes.getFinCount(); intersticeArea = (tubeDiskArea - tubeOuterArea - bodyTubeArea) / tubeCount;
thickness = fin.getThickness(); // Precompute most of CNa. Equation comes from Ribner, "The ring airfoil in nonaxial
finCount = 3 * fin.getFinCount(); // flow", Journal of the Aeronautical Sciences 14(9) pp 529-530 (1947) equation (5).
baseRotation = fin.getBaseRotation(); // As stated in techdoc.pdf, it's normalized by (1/2) rho v^2 (see section 3.1.1)
cantAngle = 0; final double arprime = 2 * ar / Math.PI;
span = 2 * fin.getOuterRadius(); cnaconst = 2 * (arprime / (1 + arprime)) * Math.PI * Math.PI * innerRadius * chord;
finArea = span * fin.getLength(); log.debug("ar " + ar + ", cnaconst " + cnaconst);
crossSection = FinSet.CrossSection.SQUARE;
calculateFinGeometry(fin);
calculatePoly();
interferenceFinCount = calculateInterferenceFinCount(fin);
} }
/* /*
@ -145,7 +130,7 @@ public class TubeFinSetCalc extends TubeCalc {
public void calculateNonaxialForces(FlightConditions conditions, Transformation transform, public void calculateNonaxialForces(FlightConditions conditions, Transformation transform,
AerodynamicForces forces, WarningSet warnings) { AerodynamicForces forces, WarningSet warnings) {
if (span < 0.001) { if (outerRadius < 0.001) {
forces.setCm(0); forces.setCm(0);
forces.setCN(0); forces.setCN(0);
forces.setCNa(0); forces.setCNa(0);
@ -158,111 +143,28 @@ public class TubeFinSetCalc extends TubeCalc {
return; return;
} }
// Add warnings (radius/2 == diameter/4) // Calculate CNa
if( (0 < bodyRadius) && (thickness > bodyRadius / 2)){ log.debug("body radius " + bodyRadius + ", ref area " + conditions.getRefArea());
warnings.add(Warning.THICK_FIN); final double cna = cnaconst / conditions.getRefArea();
}
//////// Calculate CNa. /////////
// One fin without interference (both sub- and supersonic):
double cna1 = calculateFinCNa1(conditions);
// log.debug("Component cna1 = {}", cna1);
// Multiple fins with fin-fin interference
double cna;
double theta = conditions.getTheta();
double angle = baseRotation + transform.getXrotation();
// Compute basic CNa without interference effects
if (finCount == 1 || finCount == 2) {
// Basic CNa from geometry
double mul = 0;
for (int i = 0; i < finCount; i++) {
mul += MathUtil.pow2(Math.sin(theta - angle));
angle += 2 * Math.PI / finCount;
}
cna = cna1 * mul;
} else {
// Basic CNa assuming full efficiency
cna = cna1 * finCount / 2.0;
}
// log.debug("Component cna = {}", cna);
// Take into account fin-fin interference effects
switch (interferenceFinCount) {
case 1:
case 2:
case 3:
case 4:
// No interference effect
break;
case 5:
cna *= 0.948;
break;
case 6:
cna *= 0.913;
break;
case 7:
cna *= 0.854;
break;
case 8:
cna *= 0.81;
break;
default:
// Assume 75% efficiency
cna *= 0.75;
break;
}
// Body-fin interference effect
double r = bodyRadius;
double tau = r / (span + r);
if (Double.isNaN(tau) || Double.isInfinite(tau))
tau = 0;
cna *= 1 + tau; // Classical Barrowman
// cna *= pow2(1 + tau); // Barrowman thesis (too optimistic??)
// log.debug("Component cna = {}", cna);
// TODO: LOW: check for fin tip mach cone interference
// (Barrowman thesis pdf-page 40)
// TODO: LOW: fin-fin mach cone effect, MIL-HDBK page 5-25
// Calculate CP position // Calculate CP position
double x = macLead + calculateCPPos(conditions) * macLength; double x = calculateCPPos(conditions) * chord;
// log.debug("Component macLead = {}", macLead); // log.debug("CP position " + x);
// log.debug("Component macLength = {}", macLength);
// log.debug("Component x = {}", x);
// Roll forces
// Calculate roll forces, reduce forcing above stall angle // This isn't really tested, since the cant angle is required to be 0.
forces.setCrollForce((bodyRadius + outerRadius) * cna * cantAngle /
// Without body-fin interference effect: conditions.getRefLength());
// forces.CrollForce = fins * (macSpan+r) * cna1 * component.getCantAngle() /
// conditions.getRefLength();
// With body-fin interference effect:
forces.setCrollForce(finCount * (macSpan + r) * cna1 * (1 + tau) * cantAngle / conditions.getRefLength());
if (conditions.getAOA() > STALL_ANGLE) { if (conditions.getAOA() > STALL_ANGLE) {
// System.out.println("Fin stalling in roll"); // log.debug("Tube stalling in roll");
forces.setCrollForce(forces.getCrollForce() * MathUtil.clamp( forces.setCrollForce(forces.getCrollForce() *
1 - (conditions.getAOA() - STALL_ANGLE) / (STALL_ANGLE / 2), 0, 1)); MathUtil.clamp(1 - (conditions.getAOA() - STALL_ANGLE) / (STALL_ANGLE / 2), 0, 1));
} }
forces.setCrollDamp(calculateDampingMoment(conditions));
forces.setCroll(forces.getCrollForce() - forces.getCrollDamp());
// System.out.printf(component.getName() + ": roll rate:%.3f force:%.3f damp:%.3f " + forces.setCrollDamp((bodyRadius + outerRadius) * conditions.getRollRate()/conditions.getVelocity() * cna / conditions.getRefLength());
// "total:%.3f\n",
// conditions.getRollRate(), forces.CrollForce, forces.CrollDamp, forces.Croll); forces.setCroll(forces.getCrollForce() - forces.getCrollDamp());
forces.setCNa(cna); forces.setCNa(cna);
forces.setCN(cna * MathUtil.min(conditions.getAOA(), STALL_ANGLE)); forces.setCN(cna * MathUtil.min(conditions.getAOA(), STALL_ANGLE));
@ -286,293 +188,7 @@ public class TubeFinSetCalc extends TubeCalc {
forces.setCside(0); forces.setCside(0);
forces.setCyaw(0); forces.setCyaw(0);
} log.debug(forces.toString());
/**
* Returns the MAC length of the fin. This is required in the friction drag
* computation.
*
* @return the MAC length of the fin.
*/
public double getMACLength() {
return macLength;
}
public double getMidchordPos() {
return macLead + 0.5 * macLength;
}
/**
* Pre-calculates the fin geometry values.
*/
protected void calculateFinGeometry(TubeFinSet component) {
ar = 2 * pow2(span) / finArea;
Coordinate[] points = {
Coordinate.NUL,
new Coordinate(0, span),
new Coordinate(component.getLength(), span),
new Coordinate(component.getLength(), 0)
};
// Calculate the chord lead and trail positions and length
Arrays.fill(chordLead, Double.POSITIVE_INFINITY);
Arrays.fill(chordTrail, Double.NEGATIVE_INFINITY);
Arrays.fill(chordLength, 0);
for (int point = 1; point < points.length; point++) {
double x1 = points[point - 1].x;
double y1 = points[point - 1].y;
double x2 = points[point].x;
double y2 = points[point].y;
// Don't use the default EPSILON since it is too small
// and causes too much numerical instability in the computation of x below
if (MathUtil.equals(y1, y2, 0.001))
continue;
int i1 = (int) (y1 * 1.0001 / span * (DIVISIONS - 1));
int i2 = (int) (y2 * 1.0001 / span * (DIVISIONS - 1));
i1 = MathUtil.clamp(i1, 0, DIVISIONS - 1);
i2 = MathUtil.clamp(i2, 0, DIVISIONS - 1);
if (i1 > i2) {
int tmp = i2;
i2 = i1;
i1 = tmp;
}
for (int i = i1; i <= i2; i++) {
// Intersection point (x,y)
double y = i * span / (DIVISIONS - 1);
double x = (y - y2) / (y1 - y2) * x1 + (y1 - y) / (y1 - y2) * x2;
if (x < chordLead[i])
chordLead[i] = x;
if (x > chordTrail[i])
chordTrail[i] = x;
// TODO: LOW: If fin point exactly on chord line, might be counted twice:
if (y1 < y2) {
chordLength[i] -= x;
} else {
chordLength[i] += x;
}
}
}
// Check and correct any inconsistencies
for (int i = 0; i < DIVISIONS; i++) {
if (Double.isInfinite(chordLead[i]) || Double.isInfinite(chordTrail[i]) ||
Double.isNaN(chordLead[i]) || Double.isNaN(chordTrail[i])) {
chordLead[i] = 0;
chordTrail[i] = 0;
}
if (chordLength[i] < 0 || Double.isNaN(chordLength[i])) {
chordLength[i] = 0;
}
if (chordLength[i] > chordTrail[i] - chordLead[i]) {
chordLength[i] = chordTrail[i] - chordLead[i];
}
}
/* Calculate fin properties:
*
* macLength // MAC length
* macLead // MAC leading edge position
* macSpan // MAC spanwise position
* ar // Fin aspect ratio (already set)
* span // Fin span (already set)
*/
macLength = 0;
macLead = 0;
macSpan = 0;
cosGamma = 0;
cosGammaLead = 0;
rollSum = 0;
double area = 0;
double radius = component.getBodyRadius();
final double dy = span / (DIVISIONS - 1);
for (int i = 0; i < DIVISIONS; i++) {
double length = chordTrail[i] - chordLead[i];
double y = i * dy;
macLength += length * length;
log.debug("macLength = {}, length = {}, i = {}", macLength, length, i);
macSpan += y * length;
macLead += chordLead[i] * length;
area += length;
rollSum += chordLength[i] * pow2(radius + y);
if (i > 0) {
double dx = (chordTrail[i] + chordLead[i]) / 2 - (chordTrail[i - 1] + chordLead[i - 1]) / 2;
cosGamma += dy / MathUtil.hypot(dx, dy);
dx = chordLead[i] - chordLead[i - 1];
cosGammaLead += dy / MathUtil.hypot(dx, dy);
}
}
macLength *= dy;
log.debug("macLength = {}", macLength);
macSpan *= dy;
macLead *= dy;
area *= dy;
rollSum *= dy;
macLength /= area;
macSpan /= area;
macLead /= area;
cosGamma /= (DIVISIONS - 1);
cosGammaLead /= (DIVISIONS - 1);
}
/////////////// CNa1 calculation ////////////////
private static final double CNA_SUBSONIC = 0.9;
private static final double CNA_SUPERSONIC = 1.5;
private static final double CNA_SUPERSONIC_B = pow(pow2(CNA_SUPERSONIC) - 1, 1.5);
private static final double GAMMA = 1.4;
private static final LinearInterpolator K1, K2, K3;
private static final PolyInterpolator cnaInterpolator = new PolyInterpolator(
new double[] { CNA_SUBSONIC, CNA_SUPERSONIC },
new double[] { CNA_SUBSONIC, CNA_SUPERSONIC },
new double[] { CNA_SUBSONIC }
);
/* Pre-calculate the values for K1, K2 and K3 */
static {
// Up to Mach 5
int n = (int) ((5.0 - CNA_SUPERSONIC) * 10);
double[] x = new double[n];
double[] k1 = new double[n];
double[] k2 = new double[n];
double[] k3 = new double[n];
for (int i = 0; i < n; i++) {
double M = CNA_SUPERSONIC + i * 0.1;
double beta = MathUtil.safeSqrt(M * M - 1);
x[i] = M;
k1[i] = 2.0 / beta;
k2[i] = ((GAMMA + 1) * pow(M, 4) - 4 * pow2(beta)) / (4 * pow(beta, 4));
k3[i] = ((GAMMA + 1) * pow(M, 8) + (2 * pow2(GAMMA) - 7 * GAMMA - 5) * pow(M, 6) +
10 * (GAMMA + 1) * pow(M, 4) + 8) / (6 * pow(beta, 7));
}
K1 = new LinearInterpolator(x, k1);
K2 = new LinearInterpolator(x, k2);
K3 = new LinearInterpolator(x, k3);
// System.out.println("K1[m="+CNA_SUPERSONIC+"] = "+k1[0]);
// System.out.println("K2[m="+CNA_SUPERSONIC+"] = "+k2[0]);
// System.out.println("K3[m="+CNA_SUPERSONIC+"] = "+k3[0]);
}
protected double calculateFinCNa1(FlightConditions conditions) {
double mach = conditions.getMach();
double ref = conditions.getRefArea();
double alpha = MathUtil.min(conditions.getAOA(),
Math.PI - conditions.getAOA(), STALL_ANGLE);
// Subsonic case
if (mach <= CNA_SUBSONIC) {
return 2 * Math.PI * pow2(span) / (1 + MathUtil.safeSqrt(1 + (1 - pow2(mach)) *
pow2(pow2(span) / (finArea * cosGamma)))) / ref;
}
// Supersonic case
if (mach >= CNA_SUPERSONIC) {
return finArea * (K1.getValue(mach) + K2.getValue(mach) * alpha +
K3.getValue(mach) * pow2(alpha)) / ref;
}
// Transonic case, interpolate
double subV, superV;
double subD, superD;
double sq = MathUtil.safeSqrt(1 + (1 - pow2(CNA_SUBSONIC)) * pow2(span * span / (finArea * cosGamma)));
subV = 2 * Math.PI * pow2(span) / ref / (1 + sq);
subD = 2 * mach * Math.PI * pow(span, 6) / (pow2(finArea * cosGamma) * ref *
sq * pow2(1 + sq));
superV = finArea * (K1.getValue(CNA_SUPERSONIC) + K2.getValue(CNA_SUPERSONIC) * alpha +
K3.getValue(CNA_SUPERSONIC) * pow2(alpha)) / ref;
superD = -finArea / ref * 2 * CNA_SUPERSONIC / CNA_SUPERSONIC_B;
// System.out.println("subV="+subV+" superV="+superV+" subD="+subD+" superD="+superD);
return cnaInterpolator.interpolate(mach, subV, superV, subD, superD, 0);
}
private double calculateDampingMoment(FlightConditions conditions) {
double rollRate = conditions.getRollRate();
if (Math.abs(rollRate) < 0.1)
return 0;
double mach = conditions.getMach();
double absRate = Math.abs(rollRate);
/*
* At low speeds and relatively large roll rates (i.e. near apogee) the
* fin tips rotate well above stall angle. In this case sum the chords
* separately.
*/
if (absRate * (bodyRadius + span) / conditions.getVelocity() > 15 * Math.PI / 180) {
double sum = 0;
for (int i = 0; i < DIVISIONS; i++) {
double dist = bodyRadius + span * i / DIVISIONS;
double aoa = Math.min(absRate * dist / conditions.getVelocity(), 15 * Math.PI / 180);
sum += chordLength[i] * dist * aoa;
}
sum = sum * (span / DIVISIONS) * 2 * Math.PI / conditions.getBeta() /
(conditions.getRefArea() * conditions.getRefLength());
// System.out.println("SPECIAL: " +
// (MathUtil.sign(rollRate) *component.getFinCount() * sum));
return MathUtil.sign(rollRate) * finCount * sum;
}
if (mach <= CNA_SUBSONIC) {
// System.out.println("BASIC: "+
// (component.getFinCount() * 2*Math.PI * rollRate * rollSum /
// (conditions.getRefArea() * conditions.getRefLength() *
// conditions.getVelocity() * conditions.getBeta())));
return finCount * 2 * Math.PI * rollRate * rollSum /
(conditions.getRefArea() * conditions.getRefLength() *
conditions.getVelocity() * conditions.getBeta());
}
if (mach >= CNA_SUPERSONIC) {
double vel = conditions.getVelocity();
double k1 = K1.getValue(mach);
double k2 = K2.getValue(mach);
double k3 = K3.getValue(mach);
double sum = 0;
for (int i = 0; i < DIVISIONS; i++) {
double y = i * span / (DIVISIONS - 1);
double angle = rollRate * (bodyRadius + y) / vel;
sum += (k1 * angle + k2 * angle * angle + k3 * angle * angle * angle)
* chordLength[i] * (bodyRadius + y);
}
return finCount * sum * span / (DIVISIONS - 1) /
(conditions.getRefArea() * conditions.getRefLength());
}
// Transonic, do linear interpolation
FlightConditions cond = conditions.clone();
cond.setMach(CNA_SUBSONIC - 0.01);
double subsonic = calculateDampingMoment(cond);
cond.setMach(CNA_SUPERSONIC + 0.01);
double supersonic = calculateDampingMoment(cond);
return subsonic * (CNA_SUPERSONIC - mach) / (CNA_SUPERSONIC - CNA_SUBSONIC) +
supersonic * (mach - CNA_SUBSONIC) / (CNA_SUPERSONIC - CNA_SUBSONIC);
} }
/** /**
@ -640,7 +256,7 @@ public class TubeFinSetCalc extends TubeCalc {
warnings.addAll(geometryWarnings); warnings.addAll(geometryWarnings);
final double frictionCD = componentCf * wettedArea / conditions.getRefArea(); final double frictionCD = componentCf * wettedArea / conditions.getRefArea();
log.debug("frictionCD " + frictionCD);
return frictionCD; return frictionCD;
} }
@ -651,7 +267,6 @@ public class TubeFinSetCalc extends TubeCalc {
warnings.addAll(geometryWarnings); warnings.addAll(geometryWarnings);
final double cd = super.calculatePressureCD(conditions, stagnationCD, baseCD, warnings) + final double cd = super.calculatePressureCD(conditions, stagnationCD, baseCD, warnings) +
(stagnationCD + baseCD) * intersticeArea / conditions.getRefArea(); (stagnationCD + baseCD) * intersticeArea / conditions.getRefArea();
log.debug("pressure CD " + cd);
return cd; return cd;
} }