Merge pull request #2066 from JoePfeiffer/fix-tubefins
Fix interstices area calculation and update pressure drag calculation for tube fins
This commit is contained in:
commit
d2c20bd90f
@ -14,73 +14,64 @@ public abstract class TubeCalc extends RocketComponentCalc {
|
||||
|
||||
private final static Logger log = LoggerFactory.getLogger(TubeFinSetCalc.class);
|
||||
|
||||
// air density (standard conditions)
|
||||
private final double rho = 1.225; // kg/m^3
|
||||
|
||||
private final Tube tube;
|
||||
private final double diameter;
|
||||
private final double length;
|
||||
protected final double innerArea;
|
||||
private final double totalArea;
|
||||
private final double frontalArea;
|
||||
private final double epsilon;
|
||||
|
||||
public TubeCalc(RocketComponent component) {
|
||||
super(component);
|
||||
|
||||
Tube tube = (Tube)component;
|
||||
tube = (Tube)component;
|
||||
|
||||
length = tube.getLength();
|
||||
diameter = 2 * tube.getInnerRadius();
|
||||
innerArea = Math.PI * MathUtil.pow2(tube.getInnerRadius());
|
||||
totalArea = Math.PI * MathUtil.pow2(tube.getOuterRadius());
|
||||
frontalArea = totalArea - innerArea;
|
||||
epsilon = tube.getFinish().getRoughnessSize(); // roughness; note we don't maintain surface roughness of
|
||||
// interior separately from exterior.
|
||||
}
|
||||
|
||||
@Override
|
||||
public double calculatePressureCD(FlightConditions conditions,
|
||||
double stagnationCD, double baseCD, WarningSet warnings) {
|
||||
|
||||
// These calculations come from a mix of theoretical and empirical
|
||||
// results, and are marked with (t) for theoretical and (e) for empirical.
|
||||
// The theoretical results should not be modified; the empirical can be adjusted
|
||||
// to better simulate real rockets as we get data.
|
||||
|
||||
// For the sources of the empirical formulas, see Carello, Ivanov, and Mazza,
|
||||
// "Pressure drop in pipe lines for compressed air: comparison between experimental
|
||||
// and theoretical analysis", Transactions on Engineering Sciences vol 18,
|
||||
// ISSN 1743-35331998, 1998.
|
||||
|
||||
// For the rockets for which we have data, the effect of the stagnation CD appears to be
|
||||
// overstated. This code multiplies it be a factor of 0.7 to better match experimental
|
||||
// data
|
||||
|
||||
// Need to check for tube inner area 0 in case of rockets using launch lugs with
|
||||
// an inner radius of 0 to emulate rail buttons (or just weird rockets, of course)
|
||||
// an inner radius of 0 to emulate rail guides (or just weird rockets, of course)
|
||||
double tubeCD = 0.0;
|
||||
double deltap;
|
||||
if (innerArea > MathUtil.EPSILON) {
|
||||
// Temperature
|
||||
final double T = conditions.getAtmosphericConditions().getTemperature();
|
||||
|
||||
// Volume flow rate (t)
|
||||
final double Q = conditions.getVelocity() * innerArea;
|
||||
// Current atmospheric conditions
|
||||
final double p = conditions.getAtmosphericConditions().getPressure();
|
||||
final double t = conditions.getAtmosphericConditions().getTemperature();
|
||||
final double rho = conditions.getAtmosphericConditions().getDensity();
|
||||
final double v = conditions.getVelocity();
|
||||
|
||||
// Reynolds number (note Reynolds number for the interior of a pipe is based on diameter,
|
||||
// not length (t))
|
||||
final double Re = conditions.getVelocity() * diameter /
|
||||
conditions.getAtmosphericConditions().getKinematicViscosity();
|
||||
final double Re = v * diameter / conditions.getAtmosphericConditions().getKinematicViscosity();
|
||||
|
||||
// friction coefficient (for smooth tube interior) (e)
|
||||
final double lambda = 1/MathUtil.pow2(2 * Math.log(0.5625 * Math.pow(Re, 0.875)) - 0.8);
|
||||
|
||||
// pressure drop (e)
|
||||
final double P0 = 100; // standard pressure
|
||||
final double T0 = 273.15; // standard temperature
|
||||
deltap = (lambda * 8 * length * rho * MathUtil.pow2(Q) * T * P0) /
|
||||
(MathUtil.pow2(Math.PI) * Math.pow(diameter, 5) * T0 * conditions.getAtmosphericConditions().getPressure());
|
||||
} else {
|
||||
deltap = 0.0;
|
||||
// friction coefficient using Swamee-Jain equation
|
||||
double f = 0.25/MathUtil.pow2(Math.log10((epsilon / (3.7 * diameter) + 5.74/Math.pow(Re, 0.9))));
|
||||
|
||||
// If we're supersonic, apply a correction
|
||||
if (conditions.getMach() > 1) {
|
||||
f = f / conditions.getBeta();
|
||||
}
|
||||
|
||||
// pressure drop using Darcy-Weissbach equation
|
||||
deltap = f * (length * rho * MathUtil.pow2(v)) / (2 * diameter);
|
||||
|
||||
// drag coefficient of tube interior from pressure drop
|
||||
tubeCD = 2 * (deltap * innerArea) / (rho * MathUtil.pow2(v) * innerArea);
|
||||
}
|
||||
|
||||
// convert to CD and return
|
||||
return (deltap * innerArea + 0.7 * stagnationCD * frontalArea) / conditions.getRefArea();
|
||||
final double cd = (tubeCD * innerArea + 0.7*(stagnationCD + baseCD) * frontalArea) / conditions.getRefArea();
|
||||
return cd;
|
||||
}
|
||||
}
|
||||
|
@ -25,6 +25,8 @@ public class TubeFinSetCalc extends TubeCalc {
|
||||
|
||||
private static final double STALL_ANGLE = (20 * Math.PI / 180);
|
||||
private final double[] poly = new double[6];
|
||||
|
||||
private final TubeFinSet tubes;
|
||||
|
||||
// parameters straight from configuration; we'll be grabbing them once
|
||||
// so code is a bit shorter elsewhere
|
||||
@ -44,14 +46,14 @@ public class TubeFinSetCalc extends TubeCalc {
|
||||
private final double cnaconst;
|
||||
|
||||
protected final WarningSet geometryWarnings = new WarningSet();
|
||||
|
||||
|
||||
public TubeFinSetCalc(RocketComponent component) {
|
||||
super(component);
|
||||
if (!(component instanceof TubeFinSet)) {
|
||||
throw new IllegalArgumentException("Illegal component type " + component);
|
||||
}
|
||||
|
||||
final TubeFinSet tubes = (TubeFinSet) component;
|
||||
tubes = (TubeFinSet) component;
|
||||
|
||||
if (tubes.getTubeSeparation() > MathUtil.EPSILON) {
|
||||
geometryWarnings.add(Warning.TUBE_SEPARATION);
|
||||
@ -75,37 +77,53 @@ public class TubeFinSetCalc extends TubeCalc {
|
||||
|
||||
// aspect ratio.
|
||||
ar = 2 * innerRadius / chord;
|
||||
|
||||
|
||||
// Some trigonometry...
|
||||
// We need a triangle with the following three sides:
|
||||
// d is from the center of the body tube to a tangent point on the tube fin
|
||||
// outerRadius is from the center of the tube fin to the tangent point. Note that
|
||||
// d and outerRadius are at right angles
|
||||
// bodyRadius + outerRadius is from the center of the body tube to the center of the tube fin.
|
||||
// This is the hypotenuse of the right triangle.
|
||||
|
||||
// Find length of d
|
||||
final double d = Math.sqrt(MathUtil.pow2(bodyRadius + outerRadius) - MathUtil.pow2(outerRadius));
|
||||
|
||||
// Area of diamond formed by mirroring triangle on its hypotenuse (same area as rectangle
|
||||
// formed by d and outerarea, but it *isn't* that rectangle)
|
||||
double a = d * outerRadius;
|
||||
|
||||
// angle between outerRadius and bodyRadius+outerRadius
|
||||
final double theta1 = Math.acos(outerRadius/(outerRadius + bodyRadius));
|
||||
|
||||
// area of arc from tube fin, doubled to get both halves of diamond
|
||||
final double a1 = MathUtil.pow2(outerRadius) * theta1;
|
||||
|
||||
// angle between bodyRadius+outerRadius and d
|
||||
final double theta2 = Math.PI/2.0 - theta1;
|
||||
|
||||
// area of arc from body tube. Doubled so we have area to remove from diamond
|
||||
final double a2 = MathUtil.pow2(bodyRadius) * theta2;
|
||||
|
||||
// area of interstice for one tube fin
|
||||
intersticeArea = (a - a1 - a2);
|
||||
|
||||
// for comparison, what's the area of a tube fin?
|
||||
double tubeArea = MathUtil.pow2(outerRadius) * Math.PI;
|
||||
|
||||
// wetted area for friction drag calculation. We don't consider the inner surface of the tube;
|
||||
// that affects the pressure drop through the tube and so (indirecctly) affects the pressure drag.
|
||||
|
||||
// Area of the outer surface of tubes. Since roughly half
|
||||
// of the area is "masked" by the interstices between the tubes and the
|
||||
// body tube, only consider the other half of the area (so only multiplying by pi instead of 2*pi)
|
||||
final double outerArea = chord * Math.PI * outerRadius;
|
||||
// Area of the outer surface of a tube, not including portion masked by interstice
|
||||
final double outerArea = chord * 2.0 * (Math.PI - theta1) * outerRadius;
|
||||
|
||||
// Surface area of the portion of the body tube masked by the tube fins, per tube
|
||||
final BodyTube parent = (BodyTube) tubes.getParent();
|
||||
final double maskedArea = chord * 2.0 * Math.PI * bodyRadius / tubeCount;
|
||||
// Surface area of the portion of the body tube masked by the tube fin. We'll subtract it from
|
||||
// the tube fin area rather than go in and change the body tube surface area calculation. If tube
|
||||
// fin and body tube roughness aren't the same this will result in an inaccuracy.
|
||||
final double maskedArea = chord * 2.0 * theta2 * bodyRadius;
|
||||
|
||||
wettedArea = outerArea - maskedArea;
|
||||
log.debug("wetted area of tube fins " + wettedArea);
|
||||
|
||||
// frontal area of interstices between tubes for pressure drag calculation.
|
||||
// We'll treat them as a closed blunt object.
|
||||
|
||||
// area of disk passing through tube fin centers
|
||||
final double tubeDiskArea = Math.PI * MathUtil.pow2(bodyRadius + outerRadius);
|
||||
|
||||
// half of combined area of tube fin exteriors. Deliberately using the outer radius here since we
|
||||
// calculate pressure drag from the tube walls in TubeCalc
|
||||
final double tubeOuterArea = tubeCount * Math.PI * MathUtil.pow2(outerRadius) / 2.0;
|
||||
|
||||
// body tube area
|
||||
final double bodyTubeArea = Math.PI * MathUtil.pow2(bodyRadius);
|
||||
|
||||
// area of an interstice
|
||||
intersticeArea = (tubeDiskArea - tubeOuterArea - bodyTubeArea) / tubeCount;
|
||||
|
||||
// Precompute most of CNa. Equation comes from Ribner, "The ring airfoil in nonaxial
|
||||
// flow", Journal of the Aeronautical Sciences 14(9) pp 529-530 (1947) equation (5).
|
||||
@ -246,10 +264,8 @@ public class TubeFinSetCalc extends TubeCalc {
|
||||
|
||||
@Override
|
||||
public double calculateFrictionCD(FlightConditions conditions, double componentCf, WarningSet warnings) {
|
||||
warnings.addAll(geometryWarnings);
|
||||
final double frictionCD = componentCf * wettedArea / conditions.getRefArea();
|
||||
|
||||
final double frictionCD = componentCf * wettedArea / conditions.getRefArea();
|
||||
|
||||
return frictionCD;
|
||||
}
|
||||
|
||||
@ -258,18 +274,10 @@ public class TubeFinSetCalc extends TubeCalc {
|
||||
double stagnationCD, double baseCD, WarningSet warnings) {
|
||||
|
||||
warnings.addAll(geometryWarnings);
|
||||
|
||||
final double cd = super.calculatePressureCD(conditions, stagnationCD, baseCD, warnings) +
|
||||
(stagnationCD + baseCD) * intersticeArea / conditions.getRefArea();
|
||||
|
||||
(stagnationCD + baseCD) * intersticeArea / conditions.getRefArea();
|
||||
|
||||
return cd;
|
||||
}
|
||||
|
||||
private static int calculateInterferenceFinCount(TubeFinSet component) {
|
||||
RocketComponent parent = component.getParent();
|
||||
if (parent == null) {
|
||||
throw new IllegalStateException("fin set without parent component");
|
||||
}
|
||||
|
||||
return 3 * component.getFinCount();
|
||||
}
|
||||
}
|
||||
|
@ -550,4 +550,19 @@ public class BodyTube extends SymmetricComponent implements BoxBounded, MotorMou
|
||||
// The motor config also has listeners, so clear them as well
|
||||
getDefaultMotorConfig().clearConfigListeners();
|
||||
}
|
||||
|
||||
/**
|
||||
* The first time we add a TubeFinSet to the component tree, inherit the tube thickness from
|
||||
* the parent body tube
|
||||
*/
|
||||
@Override
|
||||
public final void addChild(RocketComponent component, int index, boolean trackStage) {
|
||||
super.addChild(component, index, trackStage);
|
||||
if (component instanceof TubeFinSet) {
|
||||
TubeFinSet finset = (TubeFinSet) component;
|
||||
if (Double.isNaN(finset.getThickness())) {
|
||||
finset.setThickness(getThickness());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -24,7 +24,7 @@ public class TubeFinSet extends Tube implements AxialPositionable, BoxBounded, R
|
||||
|
||||
private boolean autoRadius = true; // Radius chosen automatically based on parent component
|
||||
private double outerRadius = DEFAULT_RADIUS;
|
||||
protected double thickness = 0.002;
|
||||
protected double thickness = Double.NaN;
|
||||
private AngleMethod angleMethod = AngleMethod.FIXED;
|
||||
protected RadiusMethod radiusMethod = RadiusMethod.RELATIVE;
|
||||
|
||||
@ -49,7 +49,7 @@ public class TubeFinSet extends Tube implements AxialPositionable, BoxBounded, R
|
||||
|
||||
|
||||
/**
|
||||
* New FinSet with given number of fins and given base rotation angle.
|
||||
* New TubeFinSet with default values
|
||||
* Sets the component relative position to POSITION_RELATIVE_BOTTOM,
|
||||
* i.e. fins are positioned at the bottom of the parent component.
|
||||
*/
|
||||
@ -146,6 +146,7 @@ public class TubeFinSet extends Tube implements AxialPositionable, BoxBounded, R
|
||||
* Sets whether the radius is selected automatically or not.
|
||||
*/
|
||||
public void setOuterRadiusAutomatic(boolean auto) {
|
||||
|
||||
for (RocketComponent listener : configListeners) {
|
||||
if (listener instanceof TubeFinSet) {
|
||||
((TubeFinSet) listener).setOuterRadiusAutomatic(auto);
|
||||
@ -195,8 +196,9 @@ public class TubeFinSet extends Tube implements AxialPositionable, BoxBounded, R
|
||||
|
||||
if ((this.thickness == thickness))
|
||||
return;
|
||||
|
||||
this.thickness = MathUtil.clamp(thickness, 0, getOuterRadius());
|
||||
fireComponentChangeEvent(ComponentChangeEvent.MASS_CHANGE);
|
||||
fireComponentChangeEvent(ComponentChangeEvent.BOTH_CHANGE);
|
||||
clearPreset();
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user