Merge pull request #1887 from JoePfeiffer/rework-766

This is a rework of the railbutton aerodynamics part of PR 766.
This commit is contained in:
Billy Olsen 2022-12-21 21:05:05 -07:00 committed by GitHub
commit ff61e67b76
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 203 additions and 6 deletions

View File

@ -0,0 +1,102 @@
package net.sf.openrocket.aerodynamics.barrowman;
import java.util.List;
import java.lang.Math;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import net.sf.openrocket.aerodynamics.AerodynamicForces;
import net.sf.openrocket.aerodynamics.FlightConditions;
import net.sf.openrocket.aerodynamics.WarningSet;
import net.sf.openrocket.rocketcomponent.RailButton;
import net.sf.openrocket.rocketcomponent.RocketComponent;
import net.sf.openrocket.util.Coordinate;
import net.sf.openrocket.util.MathUtil;
import net.sf.openrocket.util.Transformation;
public class RailButtonCalc extends RocketComponentCalc {
private final static Logger log = LoggerFactory.getLogger(RailButtonCalc.class);
// values transcribed from Gowen and Perkins, "Drag of Circular Cylinders for a Wide Range
// of Reynolds Numbers and Mach Numbers", NACA Technical Note 2960, Figure 7
private static final List<Double> cdDomain = List.of(0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0, 1.6, 2.0, 2.8, 100.0);
private static final List<Double> cdRange = List.of(1.2, 1.22, 1.25, 1.3, 1.4, 1.5, 1.6, 2.1, 1.5, 1.45, 1.33, 1.33);
private final RailButton button;
public RailButtonCalc(RocketComponent component) {
super(component);
// need to stash the button
button = (RailButton) component;
}
@Override
public double calculateFrictionCD(FlightConditions conditions, double componentCf, WarningSet warnings) {
// very small relative surface area, and slick
return 0.0;
}
@Override
public void calculateNonaxialForces(FlightConditions conditions, Transformation transform,
AerodynamicForces forces, WarningSet warnings) {
// Nothing to be done
}
@Override
public double calculatePressureCD(FlightConditions conditions,
double stagnationCD, double baseCD, WarningSet warnings) {
// grab relevant button params
final int instanceCount = button.getInstanceCount();
final Coordinate[] instanceOffsets = button.getInstanceOffsets();
// compute button reference area
final double buttonHt = button.getTotalHeight();
final double outerArea = buttonHt * button.getOuterDiameter();
final double notchArea = (button.getOuterDiameter() - button.getInnerDiameter()) * button.getInnerHeight();
final double refArea = outerArea - notchArea;
// accumulate Cd contribution from each rail button
double CDmul = 0.0;
for (int i = 0; i < button.getInstanceCount(); i++) {
// compute boundary layer height at button location. I can't find a good reference for the
// formula, e.g. https://aerospaceengineeringblog.com/boundary-layers/ simply says it's the
// "scientific consensus".
double x = (button.toAbsolute(instanceOffsets[i]))[0].x; // location of button
double rex = calculateReynoldsNumber(x, conditions); // Reynolds number of button location
double del = 0.37 * x / Math.pow(rex, 0.2); // Boundary layer thickness
// compute mean airspeed over button
// this assumes airspeed changes linearly through boundary layer
// and that all parts of the railbutton contribute equally to Cd,
// neither of which is true but both are plenty close enough for our purposes
double mach;
if (buttonHt > del) {
// Case 1: button extends beyond boundary layer
// Mean velocity is 1/2 rocket velocity up to limit of boundary layer,
// full velocity after that
mach = (buttonHt - 0.5*del) * conditions.getMach()/buttonHt;
} else {
// Case 2: button is entirely within boundary layer
mach = MathUtil.map(buttonHt/2.0, 0, del, 0, conditions.getMach());
}
// look up Cd as function of speed. It's pretty constant as a function of Reynolds
// number when slow, so we can just use a function of Mach number
double cd = MathUtil.interpolate(cdDomain, cdRange, mach);
// Since later drag force calculations don't consider boundary layer, compute "effective Cd"
// based on rocket velocity
cd = cd * MathUtil.pow2(mach)/MathUtil.pow2(conditions.getMach());
// add to CDmul
CDmul += cd;
}
return CDmul * stagnationCD * refArea / conditions.getRefArea();
}
}

View File

@ -207,12 +207,6 @@ public class RailButton extends ExternalComponent implements AnglePositionable,
clearPreset();
fireComponentChangeEvent(ComponentChangeEvent.BOTH_CHANGE);
}
@Override
public boolean isAerodynamic(){
// TODO: implement aerodynamics
return false;
}
@Override
public double getAngleOffset(){

View File

@ -0,0 +1,101 @@
package net.sf.openrocket.aerodynamics;
import static org.junit.Assert.assertEquals;
import org.junit.BeforeClass;
import org.junit.Test;
import com.google.inject.Guice;
import com.google.inject.Injector;
import com.google.inject.Module;
import net.sf.openrocket.ServicesForTesting;
import net.sf.openrocket.aerodynamics.BarrowmanCalculator;
import net.sf.openrocket.aerodynamics.barrowman.RailButtonCalc;
import net.sf.openrocket.plugin.PluginModule;
import net.sf.openrocket.rocketcomponent.FlightConfiguration;
import net.sf.openrocket.rocketcomponent.BodyTube;
import net.sf.openrocket.rocketcomponent.RailButton;
import net.sf.openrocket.rocketcomponent.LaunchLug;
import net.sf.openrocket.rocketcomponent.Rocket;
import net.sf.openrocket.rocketcomponent.position.AxialMethod;
import net.sf.openrocket.startup.Application;
import net.sf.openrocket.util.MathUtil;
import net.sf.openrocket.util.TestRockets;
import net.sf.openrocket.util.Transformation;
public class RailButtonCalcTest {
protected final double EPSILON = 0.0001;
private static Injector injector;
@BeforeClass
public static void setup() {
Module applicationModule = new ServicesForTesting();
Module pluginModule = new PluginModule();
injector = Guice.createInjector( applicationModule, pluginModule);
Application.setInjector(injector);
}
@Test
public void testRailButtons() {
Rocket rocket = TestRockets.makeEstesAlphaIII();
FlightConfiguration config = rocket.getSelectedConfiguration();
// Get the body tube...
BodyTube tube = (BodyTube)rocket.getChild(0).getChild(1);
// Replace the launch lug with a (single) railbutton
LaunchLug lug = (LaunchLug)tube.getChild(1);
rocket.removeChild(lug);
RailButton button = new RailButton();
tube.addChild(button);
// Button parameters from Binder Design standard 1010
button.setOuterDiameter(0.011);
button.setInnerDiameter(0.006);
button.setBaseHeight(0.002);
button.setFlangeHeight(0.002);
button.setTotalHeight(0.008);
button.setAxialMethod(AxialMethod.ABSOLUTE);
button.setAxialOffset(1.0);
// Set up flight conditions
FlightConditions conditions = new FlightConditions(config);
conditions.setMach(1.0);
BarrowmanCalculator barrowmanObj = new BarrowmanCalculator();
RailButtonCalc calcObj = new RailButtonCalc(button);
// Calculate effective CD for rail button
// Boundary layer height
double rex = calcObj.calculateReynoldsNumber(1.0, conditions); // Reynolds number of button location
double del = 0.37 * 1.0 / Math.pow(rex, 0.2); // Boundary layer height
// Interpolate velocity at midpoint of railbutton
double mach = MathUtil.map(0.008/2.0, 0, del, 0, 1.0);
// Interpolate to get CD
double cd = MathUtil.map(mach, 0.2, 0.3, 1.22, 1.25);
// Reference area of rail button
final double outerArea = button.getTotalHeight() * button.getOuterDiameter();
final double notchArea = (button.getOuterDiameter() - button.getInnerDiameter()) * button.getInnerHeight();
final double refArea = outerArea - notchArea;
// Get "effective" CD
double calccd = cd * MathUtil.pow2(mach) * barrowmanObj.calculateStagnationCD(conditions.getMach()) * refArea / conditions.getRefArea() ;
// Now compare with value from RailButtonCalc
WarningSet warnings = new WarningSet();
AerodynamicForces assemblyForces = new AerodynamicForces().zero();
AerodynamicForces componentForces = new AerodynamicForces();
double testcd = calcObj.calculatePressureCD(conditions, barrowmanObj.calculateStagnationCD(conditions.getMach()), 0, warnings);
assertEquals("Calculated rail button CD incorrect", calccd, testcd, EPSILON);
}
}