Add files via upload
This commit is contained in:
parent
fc4c74c766
commit
278a28705c
314
v4/ppo.py
Normal file
314
v4/ppo.py
Normal file
@ -0,0 +1,314 @@
|
||||
import argparse
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from stable_baselines3.common.atari_wrappers import (
|
||||
ClipRewardEnv,
|
||||
EpisodicLifeEnv,
|
||||
FireResetEnv,
|
||||
MaxAndSkipEnv,
|
||||
NoopResetEnv
|
||||
)
|
||||
from torch.distributions.categorical import Categorical
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--exp_name', type=str, default=os.path.basename(__file__).rstrip('.py'))
|
||||
parser.add_argument('--gym_id', type=str, default='BreakoutNoFrameskip-v4')
|
||||
parser.add_argument('--learning_rate', type=float, default=2.5e-4)
|
||||
parser.add_argument('--seed', type=int, default=1)
|
||||
parser.add_argument('--total_steps', type=int, default=int(1e7))
|
||||
parser.add_argument('--use_cuda', type=bool, default=True)
|
||||
parser.add_argument('--num_envs', type=int, default=8)
|
||||
parser.add_argument('--num_steps', type=int, default=128)
|
||||
parser.add_argument('--lr_decay', type=bool, default=True)
|
||||
parser.add_argument('--use_gae', type=bool, default=True)
|
||||
parser.add_argument('--gae_lambda', type=float, default=0.95)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--num_mini_batches', type=int, default=4)
|
||||
parser.add_argument('--update_epochs', type=int, default=8)
|
||||
parser.add_argument('--norm_adv', type=bool, default=True)
|
||||
parser.add_argument('--clip_value_loss', type=bool, default=True)
|
||||
parser.add_argument('--c_1', type=float, default=1.0)
|
||||
parser.add_argument('--c_2', type=float, default=0.01)
|
||||
parser.add_argument('--max_grad_norm', type=float, default=0.5)
|
||||
parser.add_argument('--clip_epsilon', type=float, default=0.2)
|
||||
a = parser.parse_args()
|
||||
a.batch_size = int(a.num_envs * a.num_steps)
|
||||
a.minibatch_size = int(a.batch_size // a.num_mini_batches)
|
||||
return a
|
||||
|
||||
|
||||
def make_env(gym_id, seed):
|
||||
def thunk():
|
||||
env = gym.make(gym_id)
|
||||
env = gym.wrappers.RecordEpisodeStatistics(env)
|
||||
env = NoopResetEnv(env, noop_max=30)
|
||||
env = MaxAndSkipEnv(env, skip=4)
|
||||
env = EpisodicLifeEnv(env)
|
||||
if 'FIRE' in env.unwrapped.get_action_meanings():
|
||||
env = FireResetEnv(env)
|
||||
env = ClipRewardEnv(env)
|
||||
env = gym.wrappers.ResizeObservation(env, (84, 84))
|
||||
env = gym.wrappers.GrayScaleObservation(env)
|
||||
env = gym.wrappers.FrameStack(env, 4)
|
||||
env.seed(seed)
|
||||
env.action_space.seed(seed)
|
||||
env.observation_space.seed(seed)
|
||||
return env
|
||||
return thunk
|
||||
|
||||
|
||||
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
||||
torch.nn.init.orthogonal_(layer.weight, std)
|
||||
torch.nn.init.constant_(layer.bias, bias_const)
|
||||
return layer
|
||||
|
||||
|
||||
class Agent(nn.Module):
|
||||
def __init__(self, e):
|
||||
super(Agent, self).__init__()
|
||||
self.network = nn.Sequential(
|
||||
layer_init(nn.Conv2d(4, 32, 8, stride=4)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
|
||||
nn.ReLU(),
|
||||
nn.Flatten(),
|
||||
layer_init(nn.Linear(64 * 7 * 7, 512)),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.actor = layer_init(nn.Linear(512, e.single_action_space.n), std=0.01)
|
||||
self.critic = layer_init(nn.Linear(512, 1), std=1)
|
||||
|
||||
def get_value(self, x):
|
||||
return self.critic(self.network(x / 255.0))
|
||||
|
||||
def get_action_and_value(self, x, a=None, show_all=False):
|
||||
hidden = self.network(x / 255.0)
|
||||
log = self.actor(hidden)
|
||||
p = Categorical(logits=log)
|
||||
if a is None:
|
||||
a = p.sample()
|
||||
if show_all:
|
||||
return a, p.log_prob(a), p.entropy(), self.critic(hidden), p.probs
|
||||
return a, p.log_prob(a), p.entropy(), self.critic(hidden)
|
||||
|
||||
|
||||
def main(env_id, seed):
|
||||
args = get_args()
|
||||
args.gym_id = env_id
|
||||
args.seed = seed
|
||||
run_name = (
|
||||
'ppo' +
|
||||
'_epoch_' + str(args.update_epochs) +
|
||||
'_seed_' + str(args.seed)
|
||||
)
|
||||
|
||||
# Save training logs
|
||||
path_string = str(args.gym_id).split('NoFrameskip')[0] + '/' + run_name
|
||||
writer = SummaryWriter(path_string)
|
||||
writer.add_text(
|
||||
'Hyperparameter',
|
||||
'|param|value|\n|-|-|\n%s' % ('\n'.join([f'|{key}|{value}|' for key, value in vars(args).items()])),
|
||||
)
|
||||
|
||||
# Random seed
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
|
||||
# Initialize environments
|
||||
device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu')
|
||||
envs = gym.vector.SyncVectorEnv(
|
||||
[make_env(args.gym_id, args.seed + i) for i in range(args.num_envs)]
|
||||
)
|
||||
assert isinstance(envs.single_action_space, gym.spaces.Discrete), 'only discrete action space is supported'
|
||||
agent = Agent(envs).to(device)
|
||||
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
|
||||
|
||||
# Initialize buffer
|
||||
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
|
||||
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
|
||||
probs = torch.zeros((args.num_steps, args.num_envs, envs.single_action_space.n)).to(device)
|
||||
log_probs = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
|
||||
# Data collection
|
||||
global_step = 0
|
||||
start_time = time.time()
|
||||
next_obs = torch.Tensor(envs.reset()).to(device)
|
||||
next_done = torch.zeros(args.num_envs).to(device)
|
||||
num_updates = int(args.total_steps // args.batch_size)
|
||||
|
||||
for update in tqdm(range(1, num_updates + 1)):
|
||||
|
||||
# Linear decay of learning rate
|
||||
if args.lr_decay:
|
||||
frac = 1.0 - (update - 1.0) / num_updates
|
||||
lr_now = frac * args.learning_rate
|
||||
optimizer.param_groups[0]['lr'] = lr_now
|
||||
|
||||
for step in range(0, args.num_steps):
|
||||
global_step += 1 * args.num_envs
|
||||
obs[step] = next_obs
|
||||
dones[step] = next_done
|
||||
|
||||
# Compute the logarithm of the action probability output by the old policy network
|
||||
with torch.no_grad():
|
||||
action, log_prob, _, value, prob = agent.get_action_and_value(next_obs, show_all=True)
|
||||
values[step] = value.flatten()
|
||||
actions[step] = action
|
||||
probs[step] = prob
|
||||
log_probs[step] = log_prob
|
||||
|
||||
# Update the environments
|
||||
next_obs, reward, done, info = envs.step(action.cpu().numpy())
|
||||
rewards[step] = torch.tensor(reward).to(device).view(-1)
|
||||
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
|
||||
|
||||
for item in info:
|
||||
if 'episode' in item.keys():
|
||||
writer.add_scalar('charts/episodic_return', item['episode']['r'], global_step)
|
||||
break
|
||||
|
||||
# Use GAE (Generalized Advantage Estimation) technique to estimate the advantage function
|
||||
with torch.no_grad():
|
||||
next_value = agent.get_value(next_obs).reshape(1, -1)
|
||||
if args.use_gae:
|
||||
advantages = torch.zeros_like(rewards).to(device)
|
||||
last_gae_lam = 0
|
||||
for t in reversed(range(args.num_steps)):
|
||||
if t == args.num_steps - 1:
|
||||
next_non_terminal = 1.0 - next_done
|
||||
next_values = next_value
|
||||
else:
|
||||
next_non_terminal = 1.0 - dones[t + 1]
|
||||
next_values = values[t + 1]
|
||||
delta = rewards[t] + args.gamma * next_values * next_non_terminal - values[t]
|
||||
advantages[t] = last_gae_lam = (
|
||||
delta + args.gamma * args.gae_lambda * next_non_terminal * last_gae_lam
|
||||
)
|
||||
returns = advantages + values
|
||||
else:
|
||||
returns = torch.zeros_like(rewards).to(device)
|
||||
for t in reversed(range(args.num_steps)):
|
||||
if t == args.num_steps - 1:
|
||||
next_non_terminal = 1.0 - next_done
|
||||
next_return = next_value
|
||||
else:
|
||||
next_non_terminal = 1.0 - dones[t + 1]
|
||||
next_return = returns[t + 1]
|
||||
returns[t] = rewards[t] + args.gamma * next_non_terminal * next_return
|
||||
advantages = returns - values
|
||||
|
||||
# ---------------------- We have collected enough data, now let's start training ---------------------- #
|
||||
# Flatten each batch
|
||||
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
|
||||
b_probs = probs.reshape((-1, envs.single_action_space.n))
|
||||
b_log_probs = log_probs.reshape(-1)
|
||||
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
|
||||
b_advantages = advantages.reshape(-1)
|
||||
b_returns = returns.reshape(-1)
|
||||
b_values = values.reshape(-1)
|
||||
|
||||
# Update the policy network and value network
|
||||
b_index = np.arange(args.batch_size)
|
||||
for epoch in range(1, args.update_epochs + 1):
|
||||
np.random.shuffle(b_index)
|
||||
for start in range(0, args.batch_size, args.minibatch_size):
|
||||
end = start + args.minibatch_size
|
||||
mb_index = b_index[start:end]
|
||||
|
||||
# The latest outputs of the policy network and value network
|
||||
_, new_log_prob, entropy, new_value, new_probs = (
|
||||
agent.get_action_and_value(b_obs[mb_index], b_actions.long()[mb_index], show_all=True)
|
||||
)
|
||||
|
||||
# Compute KL divergence
|
||||
d = torch.sum(
|
||||
b_probs[mb_index] * torch.log((b_probs[mb_index] + 1e-12) / (new_probs + 1e-12)), 1
|
||||
)
|
||||
writer.add_scalar('charts/average_kld', d.mean(), global_step)
|
||||
writer.add_scalar('others/min_kld', d.min(), global_step)
|
||||
writer.add_scalar('others/max_kld', d.max(), global_step)
|
||||
log_ratio = new_log_prob - b_log_probs[mb_index]
|
||||
ratio = log_ratio.exp()
|
||||
|
||||
# Advantage normalization
|
||||
mb_advantages = b_advantages[mb_index]
|
||||
if args.norm_adv:
|
||||
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-12)
|
||||
|
||||
# Policy loss
|
||||
pg_loss1 = -mb_advantages * ratio
|
||||
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_epsilon, 1 + args.clip_epsilon)
|
||||
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
|
||||
|
||||
# Value loss
|
||||
new_value = new_value.view(-1)
|
||||
if args.clip_value_loss:
|
||||
v_loss_un_clipped = (new_value - b_returns[mb_index]) ** 2
|
||||
v_clipped = b_values[mb_index] + torch.clamp(
|
||||
new_value - b_values[mb_index],
|
||||
-args.clip_epsilon,
|
||||
args.clip_epsilon,
|
||||
)
|
||||
v_loss_clipped = (v_clipped - b_returns[mb_index]) ** 2
|
||||
v_loss_max = torch.max(v_loss_un_clipped, v_loss_clipped)
|
||||
v_loss = 0.5 * v_loss_max.mean()
|
||||
else:
|
||||
v_loss = 0.5 * ((new_value - b_returns[mb_index]) ** 2).mean()
|
||||
|
||||
# Policy entropy
|
||||
entropy_loss = entropy.mean()
|
||||
|
||||
# Total loss
|
||||
loss = pg_loss + v_loss * args.c_1 - entropy_loss * args.c_2
|
||||
|
||||
# Save the data during the training process
|
||||
writer.add_scalar('losses/value_loss', v_loss.item(), global_step)
|
||||
writer.add_scalar('losses/policy_loss', pg_loss.item(), global_step)
|
||||
writer.add_scalar('losses/entropy', entropy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/delta', torch.abs(ratio - 1).mean().item(), global_step)
|
||||
|
||||
# Update network parameters
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
|
||||
optimizer.step()
|
||||
|
||||
y_pre, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
|
||||
var_y = np.var(y_true)
|
||||
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pre) / var_y
|
||||
|
||||
# Save the data during the training process
|
||||
writer.add_scalar('charts/learning_rate', optimizer.param_groups[0]['lr'], global_step)
|
||||
writer.add_scalar('others/explained_variance', explained_var, global_step)
|
||||
writer.add_scalar('charts/SPS', int(global_step / (time.time() - start_time)), global_step)
|
||||
|
||||
envs.close()
|
||||
writer.close()
|
||||
|
||||
|
||||
def run():
|
||||
for env_id in ['Breakout']:
|
||||
for seed in [1, 2, 3]:
|
||||
print(env_id + 'NoFrameskip-v4', 'seed:', seed)
|
||||
main(env_id + 'NoFrameskip-v4', seed)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run()
|
325
v4/spo.py
Normal file
325
v4/spo.py
Normal file
@ -0,0 +1,325 @@
|
||||
import argparse
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from stable_baselines3.common.atari_wrappers import (
|
||||
ClipRewardEnv,
|
||||
EpisodicLifeEnv,
|
||||
FireResetEnv,
|
||||
MaxAndSkipEnv,
|
||||
NoopResetEnv
|
||||
)
|
||||
from torch.distributions.categorical import Categorical
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--exp_name', type=str, default=os.path.basename(__file__).rstrip('.py'))
|
||||
parser.add_argument('--gym_id', type=str, default='BreakoutNoFrameskip-v4')
|
||||
parser.add_argument('--learning_rate', type=float, default=2.5e-4)
|
||||
parser.add_argument('--seed', type=int, default=1)
|
||||
parser.add_argument('--total_steps', type=int, default=int(1e7))
|
||||
parser.add_argument('--use_cuda', type=bool, default=True)
|
||||
parser.add_argument('--num_envs', type=int, default=8)
|
||||
parser.add_argument('--num_steps', type=int, default=128)
|
||||
parser.add_argument('--lr_decay', type=bool, default=True)
|
||||
parser.add_argument('--use_gae', type=bool, default=True)
|
||||
parser.add_argument('--gae_lambda', type=float, default=0.95)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--num_mini_batches', type=int, default=4)
|
||||
parser.add_argument('--update_epochs', type=int, default=8)
|
||||
parser.add_argument('--norm_adv', type=bool, default=True)
|
||||
parser.add_argument('--clip_value_loss', type=bool, default=True)
|
||||
parser.add_argument('--c_1', type=float, default=1.0)
|
||||
parser.add_argument('--c_2', type=float, default=0.01)
|
||||
parser.add_argument('--max_grad_norm', type=float, default=0.5)
|
||||
parser.add_argument('--kld_max', type=float, default=0.02)
|
||||
a = parser.parse_args()
|
||||
a.batch_size = int(a.num_envs * a.num_steps)
|
||||
a.minibatch_size = int(a.batch_size // a.num_mini_batches)
|
||||
return a
|
||||
|
||||
|
||||
def make_env(gym_id, seed):
|
||||
def thunk():
|
||||
env = gym.make(gym_id)
|
||||
env = gym.wrappers.RecordEpisodeStatistics(env)
|
||||
env = NoopResetEnv(env, noop_max=30)
|
||||
env = MaxAndSkipEnv(env, skip=4)
|
||||
env = EpisodicLifeEnv(env)
|
||||
if 'FIRE' in env.unwrapped.get_action_meanings():
|
||||
env = FireResetEnv(env)
|
||||
env = ClipRewardEnv(env)
|
||||
env = gym.wrappers.ResizeObservation(env, (84, 84))
|
||||
env = gym.wrappers.GrayScaleObservation(env)
|
||||
env = gym.wrappers.FrameStack(env, 4)
|
||||
env.seed(seed)
|
||||
env.action_space.seed(seed)
|
||||
env.observation_space.seed(seed)
|
||||
return env
|
||||
return thunk
|
||||
|
||||
|
||||
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
||||
torch.nn.init.orthogonal_(layer.weight, std)
|
||||
torch.nn.init.constant_(layer.bias, bias_const)
|
||||
return layer
|
||||
|
||||
|
||||
class Agent(nn.Module):
|
||||
def __init__(self, e):
|
||||
super(Agent, self).__init__()
|
||||
self.network = nn.Sequential(
|
||||
layer_init(nn.Conv2d(4, 32, 8, stride=4)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
|
||||
nn.ReLU(),
|
||||
nn.Flatten(),
|
||||
layer_init(nn.Linear(64 * 7 * 7, 512)),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.actor = layer_init(nn.Linear(512, e.single_action_space.n), std=0.01)
|
||||
self.critic = layer_init(nn.Linear(512, 1), std=1)
|
||||
|
||||
def get_value(self, x):
|
||||
return self.critic(self.network(x / 255.0))
|
||||
|
||||
def get_action_and_value(self, x, a=None, show_all=False):
|
||||
hidden = self.network(x / 255.0)
|
||||
log = self.actor(hidden)
|
||||
p = Categorical(logits=log)
|
||||
if a is None:
|
||||
a = p.sample()
|
||||
if show_all:
|
||||
return a, p.log_prob(a), p.entropy(), self.critic(hidden), p.probs
|
||||
return a, p.log_prob(a), p.entropy(), self.critic(hidden)
|
||||
|
||||
|
||||
def main(env_id, seed):
|
||||
args = get_args()
|
||||
args.gym_id = env_id
|
||||
args.seed = seed
|
||||
run_name = (
|
||||
'spo_' + str(args.kld_max) +
|
||||
'_epoch_' + str(args.update_epochs) +
|
||||
'_seed_' + str(args.seed)
|
||||
)
|
||||
|
||||
# Save training logs
|
||||
path_string = str(args.gym_id).split('NoFrameskip')[0] + '/' + run_name
|
||||
writer = SummaryWriter(path_string)
|
||||
writer.add_text(
|
||||
'Hyperparameter',
|
||||
'|param|value|\n|-|-|\n%s' % ('\n'.join([f'|{key}|{value}|' for key, value in vars(args).items()])),
|
||||
)
|
||||
|
||||
# Random seed
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
|
||||
# Initialize environments
|
||||
device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu')
|
||||
envs = gym.vector.SyncVectorEnv(
|
||||
[make_env(args.gym_id, args.seed + i) for i in range(args.num_envs)]
|
||||
)
|
||||
assert isinstance(envs.single_action_space, gym.spaces.Discrete), 'only discrete action space is supported'
|
||||
agent = Agent(envs).to(device)
|
||||
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
|
||||
|
||||
# Initialize buffer
|
||||
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
|
||||
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
|
||||
probs = torch.zeros((args.num_steps, args.num_envs, envs.single_action_space.n)).to(device)
|
||||
log_probs = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
|
||||
# Data collection
|
||||
global_step = 0
|
||||
start_time = time.time()
|
||||
next_obs = torch.Tensor(envs.reset()).to(device)
|
||||
next_done = torch.zeros(args.num_envs).to(device)
|
||||
num_updates = int(args.total_steps // args.batch_size)
|
||||
|
||||
for update in tqdm(range(1, num_updates + 1)):
|
||||
|
||||
# Linear decay of learning rate
|
||||
if args.lr_decay:
|
||||
frac = 1.0 - (update - 1.0) / num_updates
|
||||
lr_now = frac * args.learning_rate
|
||||
optimizer.param_groups[0]['lr'] = lr_now
|
||||
|
||||
for step in range(0, args.num_steps):
|
||||
global_step += 1 * args.num_envs
|
||||
obs[step] = next_obs
|
||||
dones[step] = next_done
|
||||
|
||||
# Compute the logarithm of the action probability output by the old policy network
|
||||
with torch.no_grad():
|
||||
action, log_prob, _, value, prob = agent.get_action_and_value(next_obs, show_all=True)
|
||||
values[step] = value.flatten()
|
||||
actions[step] = action
|
||||
probs[step] = prob
|
||||
log_probs[step] = log_prob
|
||||
|
||||
# Update the environments
|
||||
next_obs, reward, done, info = envs.step(action.cpu().numpy())
|
||||
rewards[step] = torch.tensor(reward).to(device).view(-1)
|
||||
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
|
||||
|
||||
for item in info:
|
||||
if 'episode' in item.keys():
|
||||
writer.add_scalar('charts/episodic_return', item['episode']['r'], global_step)
|
||||
break
|
||||
|
||||
# Use GAE (Generalized Advantage Estimation) technique to estimate the advantage function
|
||||
with torch.no_grad():
|
||||
next_value = agent.get_value(next_obs).reshape(1, -1)
|
||||
if args.use_gae:
|
||||
advantages = torch.zeros_like(rewards).to(device)
|
||||
last_gae_lam = 0
|
||||
for t in reversed(range(args.num_steps)):
|
||||
if t == args.num_steps - 1:
|
||||
next_non_terminal = 1.0 - next_done
|
||||
next_values = next_value
|
||||
else:
|
||||
next_non_terminal = 1.0 - dones[t + 1]
|
||||
next_values = values[t + 1]
|
||||
delta = rewards[t] + args.gamma * next_values * next_non_terminal - values[t]
|
||||
advantages[t] = last_gae_lam = (
|
||||
delta + args.gamma * args.gae_lambda * next_non_terminal * last_gae_lam
|
||||
)
|
||||
returns = advantages + values
|
||||
else:
|
||||
returns = torch.zeros_like(rewards).to(device)
|
||||
for t in reversed(range(args.num_steps)):
|
||||
if t == args.num_steps - 1:
|
||||
next_non_terminal = 1.0 - next_done
|
||||
next_return = next_value
|
||||
else:
|
||||
next_non_terminal = 1.0 - dones[t + 1]
|
||||
next_return = returns[t + 1]
|
||||
returns[t] = rewards[t] + args.gamma * next_non_terminal * next_return
|
||||
advantages = returns - values
|
||||
|
||||
# ---------------------- We have collected enough data, now let's start training ---------------------- #
|
||||
# Flatten each batch
|
||||
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
|
||||
b_probs = probs.reshape((-1, envs.single_action_space.n))
|
||||
b_log_probs = log_probs.reshape(-1)
|
||||
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
|
||||
b_advantages = advantages.reshape(-1)
|
||||
b_returns = returns.reshape(-1)
|
||||
b_values = values.reshape(-1)
|
||||
|
||||
# Update the policy network and value network
|
||||
b_index = np.arange(args.batch_size)
|
||||
for epoch in range(1, args.update_epochs + 1):
|
||||
np.random.shuffle(b_index)
|
||||
t = 0
|
||||
for start in range(0, args.batch_size, args.minibatch_size):
|
||||
t += 1
|
||||
end = start + args.minibatch_size
|
||||
mb_index = b_index[start:end]
|
||||
|
||||
# The latest outputs of the policy network and value network
|
||||
_, new_log_prob, entropy, new_value, new_probs = (
|
||||
agent.get_action_and_value(b_obs[mb_index], b_actions.long()[mb_index], show_all=True)
|
||||
)
|
||||
|
||||
# Compute KL divergence
|
||||
d = torch.sum(
|
||||
b_probs[mb_index] * torch.log((b_probs[mb_index] + 1e-12) / (new_probs + 1e-12)), 1
|
||||
)
|
||||
writer.add_scalar('charts/average_kld', d.mean(), global_step)
|
||||
writer.add_scalar('others/min_kld', d.min(), global_step)
|
||||
writer.add_scalar('others/max_kld', d.max(), global_step)
|
||||
log_ratio = new_log_prob - b_log_probs[mb_index]
|
||||
ratios = log_ratio.exp()
|
||||
|
||||
# Advantage normalization
|
||||
mb_advantages = b_advantages[mb_index]
|
||||
if args.norm_adv:
|
||||
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-12)
|
||||
|
||||
# Policy loss (main code of SPO)
|
||||
new_value = new_value.view(-1)
|
||||
if epoch == 1 and t == 1:
|
||||
pg_loss = (-mb_advantages * ratios).mean()
|
||||
else:
|
||||
d_clip = torch.clamp(input=d, min=0, max=args.kld_max)
|
||||
# d_clip / d
|
||||
ratio = d_clip / (d + 1e-12)
|
||||
# sign_a
|
||||
sign_a = torch.sign(mb_advantages)
|
||||
# (d_clip / d + sign_a - 1) * sign_a
|
||||
result = (ratio + sign_a - 1) * sign_a
|
||||
pg_loss = (-mb_advantages * ratios * result).mean()
|
||||
|
||||
# Value loss
|
||||
new_value = new_value.view(-1)
|
||||
if args.clip_value_loss:
|
||||
v_loss_un_clipped = (new_value - b_returns[mb_index]) ** 2
|
||||
v_clipped = b_values[mb_index] + torch.clamp(
|
||||
new_value - b_values[mb_index],
|
||||
-0.2,
|
||||
0.2,
|
||||
)
|
||||
v_loss_clipped = (v_clipped - b_returns[mb_index]) ** 2
|
||||
v_loss_max = torch.max(v_loss_un_clipped, v_loss_clipped)
|
||||
v_loss = 0.5 * v_loss_max.mean()
|
||||
else:
|
||||
v_loss = 0.5 * ((new_value - b_returns[mb_index]) ** 2).mean()
|
||||
|
||||
# Policy entropy
|
||||
entropy_loss = entropy.mean()
|
||||
|
||||
# Total loss
|
||||
loss = pg_loss + v_loss * args.c_1 - entropy_loss * args.c_2
|
||||
|
||||
# Save the data during the training process
|
||||
writer.add_scalar('losses/value_loss', v_loss.item(), global_step)
|
||||
writer.add_scalar('losses/policy_loss', pg_loss.item(), global_step)
|
||||
writer.add_scalar('losses/entropy', entropy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/delta', torch.abs(ratios - 1).mean().item(), global_step)
|
||||
|
||||
# Update network parameters
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
|
||||
optimizer.step()
|
||||
|
||||
y_pre, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
|
||||
var_y = np.var(y_true)
|
||||
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pre) / var_y
|
||||
|
||||
# Save the data during the training process
|
||||
writer.add_scalar('charts/learning_rate', optimizer.param_groups[0]['lr'], global_step)
|
||||
writer.add_scalar('others/explained_variance', explained_var, global_step)
|
||||
writer.add_scalar('charts/SPS', int(global_step / (time.time() - start_time)), global_step)
|
||||
|
||||
envs.close()
|
||||
writer.close()
|
||||
|
||||
|
||||
def run():
|
||||
for env_id in ['Breakout']:
|
||||
for seed in [1, 2, 3]:
|
||||
print(env_id + 'NoFrameskip-v4', 'seed:', seed)
|
||||
main(env_id + 'NoFrameskip-v4', seed)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run()
|
Loading…
x
Reference in New Issue
Block a user