Add files via upload
This commit is contained in:
parent
e734b1e3bb
commit
4d21bde5ed
BIN
BreakoutNoFrameskip-v4/draw_entropy_Breakout.png
Normal file
BIN
BreakoutNoFrameskip-v4/draw_entropy_Breakout.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 312 KiB |
BIN
BreakoutNoFrameskip-v4/draw_kld_Breakout.png
Normal file
BIN
BreakoutNoFrameskip-v4/draw_kld_Breakout.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 306 KiB |
BIN
BreakoutNoFrameskip-v4/draw_return_Breakout.png
Normal file
BIN
BreakoutNoFrameskip-v4/draw_return_Breakout.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 307 KiB |
317
v4/ppo.py
Normal file
317
v4/ppo.py
Normal file
@ -0,0 +1,317 @@
|
||||
import argparse
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from stable_baselines3.common.atari_wrappers import (
|
||||
ClipRewardEnv,
|
||||
EpisodicLifeEnv,
|
||||
FireResetEnv,
|
||||
MaxAndSkipEnv,
|
||||
NoopResetEnv
|
||||
)
|
||||
from torch.distributions.categorical import Categorical
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--exp_name', type=str, default=os.path.basename(__file__).rstrip('.py'))
|
||||
parser.add_argument('--gym_id', type=str, default='BreakoutNoFrameskip-v4')
|
||||
parser.add_argument('--learning_rate', type=float, default=2.5e-4)
|
||||
parser.add_argument('--seed', type=int, default=1)
|
||||
parser.add_argument('--total_steps', type=int, default=int(1e7))
|
||||
parser.add_argument('--use_cuda', type=bool, default=True)
|
||||
parser.add_argument('--num_envs', type=int, default=8)
|
||||
parser.add_argument('--num_steps', type=int, default=128)
|
||||
parser.add_argument('--lr_decay', type=bool, default=True)
|
||||
parser.add_argument('--use_gae', type=bool, default=True)
|
||||
parser.add_argument('--gae_lambda', type=float, default=0.95)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--num_mini_batches', type=int, default=4)
|
||||
parser.add_argument('--update_epochs', type=int, default=4)
|
||||
parser.add_argument('--norm_adv', type=bool, default=True)
|
||||
parser.add_argument('--clip_value_loss', type=bool, default=True)
|
||||
parser.add_argument('--c_1', type=float, default=1.0)
|
||||
parser.add_argument('--c_2', type=float, default=0.01)
|
||||
parser.add_argument('--max_grad_norm', type=float, default=0.5)
|
||||
parser.add_argument('--clip_epsilon', type=float, default=0.2)
|
||||
a = parser.parse_args()
|
||||
a.batch_size = int(a.num_envs * a.num_steps)
|
||||
a.minibatch_size = int(a.batch_size // a.num_mini_batches)
|
||||
return a
|
||||
|
||||
|
||||
def make_env(gym_id, seed):
|
||||
def thunk():
|
||||
env = gym.make(gym_id)
|
||||
env = gym.wrappers.RecordEpisodeStatistics(env)
|
||||
env = NoopResetEnv(env, noop_max=30)
|
||||
env = MaxAndSkipEnv(env, skip=4)
|
||||
env = EpisodicLifeEnv(env)
|
||||
if 'FIRE' in env.unwrapped.get_action_meanings():
|
||||
env = FireResetEnv(env)
|
||||
env = ClipRewardEnv(env)
|
||||
env = gym.wrappers.ResizeObservation(env, (84, 84))
|
||||
env = gym.wrappers.GrayScaleObservation(env)
|
||||
env = gym.wrappers.FrameStack(env, 4)
|
||||
env.seed(seed)
|
||||
env.action_space.seed(seed)
|
||||
env.observation_space.seed(seed)
|
||||
return env
|
||||
return thunk
|
||||
|
||||
|
||||
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
||||
torch.nn.init.orthogonal_(layer.weight, std)
|
||||
torch.nn.init.constant_(layer.bias, bias_const)
|
||||
return layer
|
||||
|
||||
|
||||
class Agent(nn.Module):
|
||||
def __init__(self, e):
|
||||
super(Agent, self).__init__()
|
||||
self.network = nn.Sequential(
|
||||
layer_init(nn.Conv2d(4, 32, 8, stride=4)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
|
||||
nn.ReLU(),
|
||||
nn.Flatten(),
|
||||
layer_init(nn.Linear(64 * 7 * 7, 512)),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.actor = layer_init(nn.Linear(512, e.single_action_space.n), std=0.01)
|
||||
self.critic = layer_init(nn.Linear(512, 1), std=1)
|
||||
|
||||
def get_value(self, x):
|
||||
return self.critic(self.network(x / 255.0))
|
||||
|
||||
def get_action_and_value(self, x, a=None, show_all=False):
|
||||
hidden = self.network(x / 255.0)
|
||||
log = self.actor(hidden)
|
||||
p = Categorical(logits=log)
|
||||
if a is None:
|
||||
a = p.sample()
|
||||
if show_all:
|
||||
return a, p.log_prob(a), p.entropy(), self.critic(hidden), p.probs
|
||||
return a, p.log_prob(a), p.entropy(), self.critic(hidden)
|
||||
|
||||
|
||||
def main(env_id, seed):
|
||||
args = get_args()
|
||||
args.gym_id = env_id
|
||||
args.seed = seed
|
||||
run_name = (
|
||||
'ppo' +
|
||||
'_epoch_' + str(args.update_epochs) +
|
||||
'_seed_' + str(args.seed)
|
||||
)
|
||||
|
||||
# 保存训练日志
|
||||
path_string = str(args.gym_id).split('NoFrameskip')[0] + '/' + run_name
|
||||
writer = SummaryWriter(path_string)
|
||||
writer.add_text(
|
||||
'Hyperparameter',
|
||||
'|param|value|\n|-|-|\n%s' % ('\n'.join([f'|{key}|{value}|' for key, value in vars(args).items()])),
|
||||
)
|
||||
|
||||
# 随机数种子
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
|
||||
# 初始化环境
|
||||
device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu')
|
||||
envs = gym.vector.SyncVectorEnv(
|
||||
[make_env(args.gym_id, args.seed + i) for i in range(args.num_envs)]
|
||||
)
|
||||
assert isinstance(envs.single_action_space, gym.spaces.Discrete), 'only discrete action space is supported'
|
||||
agent = Agent(envs).to(device)
|
||||
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
|
||||
|
||||
# 初始化存储
|
||||
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
|
||||
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
|
||||
probs = torch.zeros((args.num_steps, args.num_envs, envs.single_action_space.n)).to(device)
|
||||
log_probs = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
|
||||
# 开始收集数据
|
||||
global_step = 0
|
||||
start_time = time.time()
|
||||
next_obs = torch.Tensor(envs.reset()).to(device)
|
||||
next_done = torch.zeros(args.num_envs).to(device)
|
||||
num_updates = int(args.total_steps // args.batch_size)
|
||||
|
||||
for update in tqdm(range(1, num_updates + 1)):
|
||||
|
||||
# 学习率是否衰减
|
||||
if args.lr_decay:
|
||||
frac = 1.0 - (update - 1.0) / num_updates
|
||||
lr_now = frac * args.learning_rate
|
||||
optimizer.param_groups[0]['lr'] = lr_now
|
||||
|
||||
for step in range(0, args.num_steps):
|
||||
|
||||
# 每一步更新步数还要乘上并行的环境数
|
||||
global_step += 1 * args.num_envs
|
||||
obs[step] = next_obs
|
||||
dones[step] = next_done
|
||||
|
||||
# 计算旧的策略网络输出动作概率分布的对数
|
||||
with torch.no_grad():
|
||||
action, log_prob, _, value, prob = agent.get_action_and_value(next_obs, show_all=True)
|
||||
values[step] = value.flatten()
|
||||
actions[step] = action
|
||||
probs[step] = prob
|
||||
log_probs[step] = log_prob
|
||||
|
||||
# 更新环境
|
||||
next_obs, reward, done, info = envs.step(action.cpu().numpy())
|
||||
rewards[step] = torch.tensor(reward).to(device).view(-1)
|
||||
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
|
||||
|
||||
# 如果并行环境中有一个环境结束了,则输出总步数以及回合奖励和回合长度
|
||||
for item in info:
|
||||
if 'episode' in item.keys():
|
||||
# print(f"global_step={global_step}, episodic_return={item['episode']['r']}")
|
||||
writer.add_scalar('charts/episodic_return', item['episode']['r'], global_step)
|
||||
break
|
||||
|
||||
# 计算GAE
|
||||
with torch.no_grad():
|
||||
next_value = agent.get_value(next_obs).reshape(1, -1)
|
||||
if args.use_gae:
|
||||
advantages = torch.zeros_like(rewards).to(device)
|
||||
last_gae_lam = 0
|
||||
for t in reversed(range(args.num_steps)):
|
||||
if t == args.num_steps - 1:
|
||||
next_non_terminal = 1.0 - next_done
|
||||
next_values = next_value
|
||||
else:
|
||||
next_non_terminal = 1.0 - dones[t + 1]
|
||||
next_values = values[t + 1]
|
||||
delta = rewards[t] + args.gamma * next_values * next_non_terminal - values[t]
|
||||
advantages[t] = last_gae_lam = (
|
||||
delta + args.gamma * args.gae_lambda * next_non_terminal * last_gae_lam
|
||||
)
|
||||
returns = advantages + values
|
||||
else:
|
||||
returns = torch.zeros_like(rewards).to(device)
|
||||
for t in reversed(range(args.num_steps)):
|
||||
if t == args.num_steps - 1:
|
||||
next_non_terminal = 1.0 - next_done
|
||||
next_return = next_value
|
||||
else:
|
||||
next_non_terminal = 1.0 - dones[t + 1]
|
||||
next_return = returns[t + 1]
|
||||
returns[t] = rewards[t] + args.gamma * next_non_terminal * next_return
|
||||
advantages = returns - values
|
||||
|
||||
# ------------------------------- 上面收集了足够的数据,下面开始更新 ------------------------------- #
|
||||
# 将每个batch展平
|
||||
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
|
||||
b_probs = probs.reshape((-1, envs.single_action_space.n))
|
||||
b_log_probs = log_probs.reshape(-1)
|
||||
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
|
||||
b_advantages = advantages.reshape(-1)
|
||||
b_returns = returns.reshape(-1)
|
||||
b_values = values.reshape(-1)
|
||||
|
||||
# 更新策略网络和价值网络
|
||||
b_index = np.arange(args.batch_size)
|
||||
for epoch in range(1, args.update_epochs + 1):
|
||||
np.random.shuffle(b_index)
|
||||
for start in range(0, args.batch_size, args.minibatch_size):
|
||||
end = start + args.minibatch_size
|
||||
mb_index = b_index[start:end]
|
||||
|
||||
# 得到最新的策略网络和价值网络输出
|
||||
_, new_log_prob, entropy, new_value, new_probs = (
|
||||
agent.get_action_and_value(b_obs[mb_index], b_actions.long()[mb_index], show_all=True)
|
||||
)
|
||||
|
||||
# 计算kl散度
|
||||
d = torch.sum(
|
||||
b_probs[mb_index] * torch.log((b_probs[mb_index] + 1e-12) / (new_probs + 1e-12)), 1
|
||||
)
|
||||
writer.add_scalar('charts/average_kld', d.mean(), global_step)
|
||||
writer.add_scalar('others/min_kld', d.min(), global_step)
|
||||
writer.add_scalar('others/max_kld', d.max(), global_step)
|
||||
log_ratio = new_log_prob - b_log_probs[mb_index]
|
||||
ratio = log_ratio.exp()
|
||||
|
||||
# 优势值归一化
|
||||
mb_advantages = b_advantages[mb_index]
|
||||
if args.norm_adv:
|
||||
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-12)
|
||||
|
||||
# 策略网络损失
|
||||
pg_loss1 = -mb_advantages * ratio
|
||||
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_epsilon, 1 + args.clip_epsilon)
|
||||
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
|
||||
|
||||
# 价值网络损失
|
||||
new_value = new_value.view(-1)
|
||||
if args.clip_value_loss:
|
||||
v_loss_un_clipped = (new_value - b_returns[mb_index]) ** 2
|
||||
v_clipped = b_values[mb_index] + torch.clamp(
|
||||
new_value - b_values[mb_index],
|
||||
-args.clip_epsilon,
|
||||
args.clip_epsilon,
|
||||
)
|
||||
v_loss_clipped = (v_clipped - b_returns[mb_index]) ** 2
|
||||
v_loss_max = torch.max(v_loss_un_clipped, v_loss_clipped)
|
||||
v_loss = 0.5 * v_loss_max.mean()
|
||||
else:
|
||||
v_loss = 0.5 * ((new_value - b_returns[mb_index]) ** 2).mean()
|
||||
|
||||
entropy_loss = entropy.mean()
|
||||
|
||||
# 损失
|
||||
loss = pg_loss + v_loss * args.c_1 - entropy_loss * args.c_2
|
||||
|
||||
# 写入训练过程的一些数据
|
||||
writer.add_scalar('losses/value_loss', v_loss.item(), global_step)
|
||||
writer.add_scalar('losses/policy_loss', pg_loss.item(), global_step)
|
||||
writer.add_scalar('losses/entropy', entropy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/delta', torch.abs(ratio - 1).mean().item(), global_step)
|
||||
|
||||
# 更新网络参数
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
|
||||
optimizer.step()
|
||||
|
||||
y_pre, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
|
||||
var_y = np.var(y_true)
|
||||
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pre) / var_y
|
||||
|
||||
# 写入训练过程的一些数据
|
||||
writer.add_scalar('charts/learning_rate', optimizer.param_groups[0]['lr'], global_step)
|
||||
writer.add_scalar('others/explained_variance', explained_var, global_step)
|
||||
writer.add_scalar('charts/SPS', int(global_step / (time.time() - start_time)), global_step)
|
||||
|
||||
envs.close()
|
||||
writer.close()
|
||||
|
||||
|
||||
def run():
|
||||
for env_id in ['Breakout']:
|
||||
for seed in [1, 2, 3]:
|
||||
print(env_id + 'NoFrameskip-v4', 'seed:', seed)
|
||||
main(env_id + 'NoFrameskip-v4', seed)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run()
|
329
v4/spo.py
Normal file
329
v4/spo.py
Normal file
@ -0,0 +1,329 @@
|
||||
import argparse
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from stable_baselines3.common.atari_wrappers import (
|
||||
ClipRewardEnv,
|
||||
EpisodicLifeEnv,
|
||||
FireResetEnv,
|
||||
MaxAndSkipEnv,
|
||||
NoopResetEnv
|
||||
)
|
||||
from torch.distributions.categorical import Categorical
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--exp_name', type=str, default=os.path.basename(__file__).rstrip('.py'))
|
||||
parser.add_argument('--gym_id', type=str, default='BreakoutNoFrameskip-v4')
|
||||
parser.add_argument('--learning_rate', type=float, default=2.5e-4)
|
||||
parser.add_argument('--seed', type=int, default=1)
|
||||
parser.add_argument('--total_steps', type=int, default=int(1e7))
|
||||
parser.add_argument('--use_cuda', type=bool, default=True)
|
||||
parser.add_argument('--num_envs', type=int, default=8)
|
||||
parser.add_argument('--num_steps', type=int, default=128)
|
||||
parser.add_argument('--lr_decay', type=bool, default=True)
|
||||
parser.add_argument('--use_gae', type=bool, default=True)
|
||||
parser.add_argument('--gae_lambda', type=float, default=0.95)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--num_mini_batches', type=int, default=4)
|
||||
parser.add_argument('--update_epochs', type=int, default=8)
|
||||
parser.add_argument('--norm_adv', type=bool, default=True)
|
||||
parser.add_argument('--clip_value_loss', type=bool, default=True)
|
||||
parser.add_argument('--c_1', type=float, default=1.0)
|
||||
parser.add_argument('--c_2', type=float, default=0.01)
|
||||
parser.add_argument('--max_grad_norm', type=float, default=0.5)
|
||||
parser.add_argument('--kld_max', type=float, default=0.02)
|
||||
a = parser.parse_args()
|
||||
a.batch_size = int(a.num_envs * a.num_steps)
|
||||
a.minibatch_size = int(a.batch_size // a.num_mini_batches)
|
||||
return a
|
||||
|
||||
|
||||
def make_env(gym_id, seed):
|
||||
def thunk():
|
||||
env = gym.make(gym_id)
|
||||
env = gym.wrappers.RecordEpisodeStatistics(env)
|
||||
env = NoopResetEnv(env, noop_max=30)
|
||||
env = MaxAndSkipEnv(env, skip=4)
|
||||
env = EpisodicLifeEnv(env)
|
||||
if 'FIRE' in env.unwrapped.get_action_meanings():
|
||||
env = FireResetEnv(env)
|
||||
env = ClipRewardEnv(env)
|
||||
env = gym.wrappers.ResizeObservation(env, (84, 84))
|
||||
env = gym.wrappers.GrayScaleObservation(env)
|
||||
env = gym.wrappers.FrameStack(env, 4)
|
||||
env.seed(seed)
|
||||
env.action_space.seed(seed)
|
||||
env.observation_space.seed(seed)
|
||||
return env
|
||||
return thunk
|
||||
|
||||
|
||||
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
||||
torch.nn.init.orthogonal_(layer.weight, std)
|
||||
torch.nn.init.constant_(layer.bias, bias_const)
|
||||
return layer
|
||||
|
||||
|
||||
class Agent(nn.Module):
|
||||
def __init__(self, e):
|
||||
super(Agent, self).__init__()
|
||||
self.network = nn.Sequential(
|
||||
layer_init(nn.Conv2d(4, 32, 8, stride=4)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
|
||||
nn.ReLU(),
|
||||
nn.Flatten(),
|
||||
layer_init(nn.Linear(64 * 7 * 7, 512)),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.actor = layer_init(nn.Linear(512, e.single_action_space.n), std=0.01)
|
||||
self.critic = layer_init(nn.Linear(512, 1), std=1)
|
||||
|
||||
def get_value(self, x):
|
||||
return self.critic(self.network(x / 255.0))
|
||||
|
||||
def get_action_and_value(self, x, a=None, show_all=False):
|
||||
hidden = self.network(x / 255.0)
|
||||
log = self.actor(hidden)
|
||||
p = Categorical(logits=log)
|
||||
if a is None:
|
||||
a = p.sample()
|
||||
if show_all:
|
||||
return a, p.log_prob(a), p.entropy(), self.critic(hidden), p.probs
|
||||
return a, p.log_prob(a), p.entropy(), self.critic(hidden)
|
||||
|
||||
|
||||
def main(env_id, seed):
|
||||
args = get_args()
|
||||
args.gym_id = env_id
|
||||
args.seed = seed
|
||||
run_name = (
|
||||
'spo_' + str(args.kld_max) +
|
||||
'_epoch_' + str(args.update_epochs) +
|
||||
'_seed_' + str(args.seed)
|
||||
)
|
||||
|
||||
# 保存训练日志
|
||||
path_string = str(args.gym_id).split('NoFrameskip')[0] + '/' + run_name
|
||||
writer = SummaryWriter(path_string)
|
||||
writer.add_text(
|
||||
'Hyperparameter',
|
||||
'|param|value|\n|-|-|\n%s' % ('\n'.join([f'|{key}|{value}|' for key, value in vars(args).items()])),
|
||||
)
|
||||
|
||||
# 随机数种子
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
|
||||
# 初始化环境
|
||||
device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu')
|
||||
envs = gym.vector.SyncVectorEnv(
|
||||
[make_env(args.gym_id, args.seed + i) for i in range(args.num_envs)]
|
||||
)
|
||||
assert isinstance(envs.single_action_space, gym.spaces.Discrete), 'only discrete action space is supported'
|
||||
agent = Agent(envs).to(device)
|
||||
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
|
||||
|
||||
# 初始化存储
|
||||
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
|
||||
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
|
||||
probs = torch.zeros((args.num_steps, args.num_envs, envs.single_action_space.n)).to(device)
|
||||
log_probs = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
||||
|
||||
# 开始收集数据
|
||||
global_step = 0
|
||||
start_time = time.time()
|
||||
next_obs = torch.Tensor(envs.reset()).to(device)
|
||||
next_done = torch.zeros(args.num_envs).to(device)
|
||||
num_updates = int(args.total_steps // args.batch_size)
|
||||
|
||||
for update in tqdm(range(1, num_updates + 1)):
|
||||
|
||||
# 学习率是否衰减
|
||||
if args.lr_decay:
|
||||
frac = 1.0 - (update - 1.0) / num_updates
|
||||
lr_now = frac * args.learning_rate
|
||||
optimizer.param_groups[0]['lr'] = lr_now
|
||||
|
||||
for step in range(0, args.num_steps):
|
||||
|
||||
# 每一步更新步数还要乘上并行的环境数
|
||||
global_step += 1 * args.num_envs
|
||||
obs[step] = next_obs
|
||||
dones[step] = next_done
|
||||
|
||||
# 计算旧的策略网络输出动作概率分布的对数
|
||||
with torch.no_grad():
|
||||
action, log_prob, _, value, prob = agent.get_action_and_value(next_obs, show_all=True)
|
||||
values[step] = value.flatten()
|
||||
actions[step] = action
|
||||
probs[step] = prob
|
||||
log_probs[step] = log_prob
|
||||
|
||||
# 更新环境
|
||||
next_obs, reward, done, info = envs.step(action.cpu().numpy())
|
||||
rewards[step] = torch.tensor(reward).to(device).view(-1)
|
||||
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
|
||||
|
||||
# 如果并行环境中有一个环境结束了,则输出总步数以及回合奖励和回合长度
|
||||
for item in info:
|
||||
if 'episode' in item.keys():
|
||||
# print(f"global_step={global_step}, episodic_return={item['episode']['r']}")
|
||||
writer.add_scalar('charts/episodic_return', item['episode']['r'], global_step)
|
||||
break
|
||||
|
||||
# 计算GAE
|
||||
with torch.no_grad():
|
||||
next_value = agent.get_value(next_obs).reshape(1, -1)
|
||||
if args.use_gae:
|
||||
advantages = torch.zeros_like(rewards).to(device)
|
||||
last_gae_lam = 0
|
||||
for t in reversed(range(args.num_steps)):
|
||||
if t == args.num_steps - 1:
|
||||
next_non_terminal = 1.0 - next_done
|
||||
next_values = next_value
|
||||
else:
|
||||
next_non_terminal = 1.0 - dones[t + 1]
|
||||
next_values = values[t + 1]
|
||||
delta = rewards[t] + args.gamma * next_values * next_non_terminal - values[t]
|
||||
advantages[t] = last_gae_lam = (
|
||||
delta + args.gamma * args.gae_lambda * next_non_terminal * last_gae_lam
|
||||
)
|
||||
returns = advantages + values
|
||||
else:
|
||||
returns = torch.zeros_like(rewards).to(device)
|
||||
for t in reversed(range(args.num_steps)):
|
||||
if t == args.num_steps - 1:
|
||||
next_non_terminal = 1.0 - next_done
|
||||
next_return = next_value
|
||||
else:
|
||||
next_non_terminal = 1.0 - dones[t + 1]
|
||||
next_return = returns[t + 1]
|
||||
returns[t] = rewards[t] + args.gamma * next_non_terminal * next_return
|
||||
advantages = returns - values
|
||||
|
||||
# ------------------------------- 上面收集了足够的数据,下面开始更新 ------------------------------- #
|
||||
# 将每个batch展平
|
||||
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
|
||||
b_probs = probs.reshape((-1, envs.single_action_space.n))
|
||||
b_log_probs = log_probs.reshape(-1)
|
||||
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
|
||||
b_advantages = advantages.reshape(-1)
|
||||
b_returns = returns.reshape(-1)
|
||||
b_values = values.reshape(-1)
|
||||
|
||||
# 更新策略网络和价值网络
|
||||
b_index = np.arange(args.batch_size)
|
||||
for epoch in range(1, args.update_epochs + 1):
|
||||
np.random.shuffle(b_index)
|
||||
t = 0
|
||||
for start in range(0, args.batch_size, args.minibatch_size):
|
||||
t += 1
|
||||
end = start + args.minibatch_size
|
||||
mb_index = b_index[start:end]
|
||||
|
||||
# 得到最新的策略网络和价值网络输出
|
||||
_, new_log_prob, entropy, new_value, new_probs = (
|
||||
agent.get_action_and_value(b_obs[mb_index], b_actions.long()[mb_index], show_all=True)
|
||||
)
|
||||
|
||||
# 计算kl散度
|
||||
d = torch.sum(
|
||||
b_probs[mb_index] * torch.log((b_probs[mb_index] + 1e-12) / (new_probs + 1e-12)), 1
|
||||
)
|
||||
writer.add_scalar('charts/average_kld', d.mean(), global_step)
|
||||
writer.add_scalar('others/min_kld', d.min(), global_step)
|
||||
writer.add_scalar('others/max_kld', d.max(), global_step)
|
||||
log_ratio = new_log_prob - b_log_probs[mb_index]
|
||||
ratios = log_ratio.exp()
|
||||
|
||||
# 优势值归一化
|
||||
mb_advantages = b_advantages[mb_index]
|
||||
if args.norm_adv:
|
||||
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-12)
|
||||
|
||||
# 策略网络损失
|
||||
new_value = new_value.view(-1)
|
||||
if epoch == 1 and t == 1:
|
||||
pg_loss = (-mb_advantages * ratios).mean()
|
||||
else:
|
||||
d_clip = torch.clamp(input=d, min=0, max=args.kld_max)
|
||||
# d_clip / d
|
||||
ratio = d_clip / (d + 1e-12)
|
||||
# sign_a
|
||||
sign_a = torch.sign(mb_advantages)
|
||||
# (d_clip / d + sign_a - 1) * sign_a
|
||||
result = (ratio + sign_a - 1) * sign_a
|
||||
# 策略网络损失
|
||||
pg_loss = (-mb_advantages * ratios * result).mean()
|
||||
|
||||
# 价值网络损失
|
||||
new_value = new_value.view(-1)
|
||||
if args.clip_value_loss:
|
||||
v_loss_un_clipped = (new_value - b_returns[mb_index]) ** 2
|
||||
v_clipped = b_values[mb_index] + torch.clamp(
|
||||
new_value - b_values[mb_index],
|
||||
-0.2,
|
||||
0.2,
|
||||
)
|
||||
v_loss_clipped = (v_clipped - b_returns[mb_index]) ** 2
|
||||
v_loss_max = torch.max(v_loss_un_clipped, v_loss_clipped)
|
||||
v_loss = 0.5 * v_loss_max.mean()
|
||||
else:
|
||||
v_loss = 0.5 * ((new_value - b_returns[mb_index]) ** 2).mean()
|
||||
|
||||
entropy_loss = entropy.mean()
|
||||
|
||||
# 损失
|
||||
loss = pg_loss + v_loss * args.c_1 - entropy_loss * args.c_2
|
||||
|
||||
# 写入训练过程的一些数据
|
||||
writer.add_scalar('losses/value_loss', v_loss.item(), global_step)
|
||||
writer.add_scalar('losses/policy_loss', pg_loss.item(), global_step)
|
||||
writer.add_scalar('losses/entropy', entropy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/delta', torch.abs(ratios - 1).mean().item(), global_step)
|
||||
|
||||
# 更新网络参数
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
|
||||
optimizer.step()
|
||||
|
||||
y_pre, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
|
||||
var_y = np.var(y_true)
|
||||
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pre) / var_y
|
||||
|
||||
# 写入训练过程的一些数据
|
||||
writer.add_scalar('charts/learning_rate', optimizer.param_groups[0]['lr'], global_step)
|
||||
writer.add_scalar('others/explained_variance', explained_var, global_step)
|
||||
writer.add_scalar('charts/SPS', int(global_step / (time.time() - start_time)), global_step)
|
||||
|
||||
envs.close()
|
||||
writer.close()
|
||||
|
||||
|
||||
def run():
|
||||
for env_id in ['Breakout']:
|
||||
for seed in [1, 2, 3]:
|
||||
print(env_id + 'NoFrameskip-v4', 'seed:', seed)
|
||||
main(env_id + 'NoFrameskip-v4', seed)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run()
|
338
v5/ppo_clip.py
Normal file
338
v5/ppo_clip.py
Normal file
@ -0,0 +1,338 @@
|
||||
import argparse
|
||||
import os
|
||||
import time
|
||||
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
import torch
|
||||
from stable_baselines3.common.atari_wrappers import FireResetEnv, EpisodicLifeEnv, ClipRewardEnv
|
||||
from torch import nn, optim
|
||||
from torch.distributions import Categorical
|
||||
from torch.nn.utils.clip_grad import clip_grad_norm_
|
||||
from torch.utils.tensorboard.writer import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--exp_name', type=str, default=os.path.basename(__file__).rstrip('.py'))
|
||||
parser.add_argument('--env_id', type=str, default='ALE/Breakout-v5')
|
||||
parser.add_argument('--seed', type=int, default=1)
|
||||
parser.add_argument('--use_cuda', type=bool, default=True)
|
||||
parser.add_argument('--learning_rate', type=float, default=2.5e-4)
|
||||
parser.add_argument('--lr_decay', type=bool, default=True)
|
||||
parser.add_argument('--total_steps', type=int, default=int(1e7))
|
||||
parser.add_argument('--num_envs', type=int, default=8)
|
||||
parser.add_argument('--num_steps', type=int, default=128)
|
||||
parser.add_argument('--update_epochs', type=int, default=8)
|
||||
parser.add_argument('--num_mini_batches', type=int, default=4)
|
||||
parser.add_argument('--gae_lambda', type=float, default=0.95)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--clip_value_loss', type=bool, default=True)
|
||||
parser.add_argument('--c_1', type=float, default=1.0)
|
||||
parser.add_argument('--c_2', type=float, default=0.01)
|
||||
parser.add_argument('--clip_grad_norm', type=float, default=0.5)
|
||||
parser.add_argument('--clip_epsilon', type=float, default=0.2)
|
||||
args = parser.parse_args()
|
||||
args.device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu')
|
||||
args.batch_size = int(args.num_envs * args.num_steps)
|
||||
args.minibatch_size = int(args.batch_size // args.num_mini_batches)
|
||||
args.num_updates = int(args.total_steps // args.batch_size)
|
||||
return args
|
||||
|
||||
|
||||
def make_env(env_id):
|
||||
def thunk():
|
||||
env = gym.make(env_id, frameskip=1, repeat_action_probability=0.0, full_action_space=False)
|
||||
env = gym.wrappers.RecordEpisodeStatistics(env)
|
||||
if 'FIRE' in env.unwrapped.get_action_meanings():
|
||||
env = FireResetEnv(env)
|
||||
env = EpisodicLifeEnv(env)
|
||||
env = ClipRewardEnv(env)
|
||||
env = gym.wrappers.AtariPreprocessing(env, scale_obs=True)
|
||||
env = gym.wrappers.FrameStack(env, 4)
|
||||
return env
|
||||
return thunk
|
||||
|
||||
|
||||
def compute_advantages(rewards, flags, values, last_value, args):
|
||||
advantages = torch.zeros((args.num_steps, args.num_envs)).to(args.device)
|
||||
adv = torch.zeros(args.num_envs).to(args.device)
|
||||
for i in reversed(range(args.num_steps)):
|
||||
returns = rewards[i] + args.gamma * flags[i] * last_value
|
||||
delta = returns - values[i]
|
||||
adv = delta + args.gamma * args.gae_lambda * flags[i] * adv
|
||||
advantages[i] = adv
|
||||
last_value = values[i]
|
||||
return advantages
|
||||
|
||||
|
||||
class Buffer:
|
||||
def __init__(self, num_steps, num_envs, observation_shape, action_dim, device):
|
||||
self.states = np.zeros((num_steps, num_envs, *observation_shape), dtype=np.float32)
|
||||
self.actions = np.zeros((num_steps, num_envs), dtype=np.int64)
|
||||
self.rewards = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.flags = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.log_probs = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.probs = np.zeros((num_steps, num_envs, action_dim), dtype=np.float32)
|
||||
self.values = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.step = 0
|
||||
self.num_steps = num_steps
|
||||
self.device = device
|
||||
|
||||
def push(self, state, action, reward, flag, log_prob, prob, value):
|
||||
self.states[self.step] = state
|
||||
self.actions[self.step] = action
|
||||
self.rewards[self.step] = reward
|
||||
self.flags[self.step] = flag
|
||||
self.log_probs[self.step] = log_prob
|
||||
self.probs[self.step] = prob
|
||||
self.values[self.step] = value
|
||||
self.step = (self.step + 1) % self.num_steps
|
||||
|
||||
def get(self):
|
||||
return (
|
||||
torch.from_numpy(self.states).to(self.device),
|
||||
torch.from_numpy(self.actions).to(self.device),
|
||||
torch.from_numpy(self.rewards).to(self.device),
|
||||
torch.from_numpy(self.flags).to(self.device),
|
||||
torch.from_numpy(self.log_probs).to(self.device),
|
||||
torch.from_numpy(self.values).to(self.device),
|
||||
)
|
||||
|
||||
def get_probs(self):
|
||||
return torch.from_numpy(self.probs).to(self.device)
|
||||
|
||||
|
||||
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
||||
torch.nn.init.orthogonal_(layer.weight, std)
|
||||
torch.nn.init.constant_(layer.bias, bias_const)
|
||||
return layer
|
||||
|
||||
|
||||
class Agent(nn.Module):
|
||||
def __init__(self, action_dim, device):
|
||||
super().__init__()
|
||||
self.encoder = nn.Sequential(
|
||||
layer_init(nn.Conv2d(4, 32, 8, stride=4)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
|
||||
nn.ReLU(),
|
||||
nn.Flatten(),
|
||||
layer_init(nn.Linear(64 * 7 * 7, 512)),
|
||||
nn.ReLU()
|
||||
)
|
||||
self.actor_net = layer_init(nn.Linear(512, action_dim), std=0.01)
|
||||
self.critic_net = layer_init(nn.Linear(512, 1), std=1)
|
||||
|
||||
if device.type == 'cuda':
|
||||
self.cuda()
|
||||
|
||||
def forward(self, state):
|
||||
hidden = self.encoder(state)
|
||||
actor_value = self.actor_net(hidden)
|
||||
distribution = Categorical(logits=actor_value)
|
||||
action = distribution.sample()
|
||||
log_prob = distribution.log_prob(action)
|
||||
value = self.critic_net(hidden).squeeze(-1)
|
||||
return action, log_prob, value, distribution.probs
|
||||
|
||||
def evaluate(self, states, actions):
|
||||
hidden = self.encoder(states)
|
||||
actor_values = self.actor_net(hidden)
|
||||
distribution = Categorical(logits=actor_values)
|
||||
log_probs = distribution.log_prob(actions)
|
||||
entropy = distribution.entropy()
|
||||
values = self.critic_net(hidden).squeeze(-1)
|
||||
return log_probs, values, entropy, distribution.probs
|
||||
|
||||
def critic(self, state):
|
||||
return self.critic_net(self.encoder(state)).squeeze(-1)
|
||||
|
||||
|
||||
def train(env_id, seed):
|
||||
args = get_args()
|
||||
args.env_id = env_id
|
||||
args.seed = seed
|
||||
run_name = (
|
||||
'ppo_clip' +
|
||||
'_epoch_' + str(args.update_epochs) +
|
||||
'_seed_' + str(args.seed)
|
||||
)
|
||||
|
||||
# 保存训练日志
|
||||
path_string = str(args.env_id)[4:] + '/' + run_name
|
||||
writer = SummaryWriter(path_string)
|
||||
writer.add_text(
|
||||
'Hyperparameter',
|
||||
'|param|value|\n|-|-|\n%s' % ('\n'.join([f'|{key}|{value}|' for key, value in vars(args).items()])),
|
||||
)
|
||||
|
||||
# 初始化并行环境
|
||||
envs = gym.vector.AsyncVectorEnv([make_env(args.env_id) for _ in range(args.num_envs)])
|
||||
|
||||
# 状态空间和动作空间
|
||||
observation_shape = envs.single_observation_space.shape
|
||||
action_dim = envs.single_action_space.n
|
||||
|
||||
# 随机数种子
|
||||
if args.seed:
|
||||
numpy_rng = np.random.default_rng(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
state, _ = envs.reset(seed=args.seed)
|
||||
else:
|
||||
numpy_rng = np.random.default_rng()
|
||||
state, _ = envs.reset()
|
||||
|
||||
# 价值网络和策略网络
|
||||
agent = Agent(action_dim, args.device)
|
||||
|
||||
# 优化器
|
||||
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate)
|
||||
|
||||
# 存储数据的buffer
|
||||
rollout_buffer = Buffer(args.num_steps, args.num_envs, observation_shape, action_dim, args.device)
|
||||
global_step = 0
|
||||
start_time = time.time()
|
||||
|
||||
# 开始收集数据
|
||||
for _ in tqdm(range(args.num_updates)):
|
||||
|
||||
# 学习率线性递减
|
||||
if args.lr_decay:
|
||||
optimizer.param_groups[0]['lr'] -= (args.learning_rate - 1e-12) / args.num_updates
|
||||
|
||||
for _ in range(args.num_steps):
|
||||
global_step += 1 * args.num_envs
|
||||
|
||||
with torch.no_grad():
|
||||
action, log_prob, value, prob = agent(torch.from_numpy(state).to(args.device).float())
|
||||
|
||||
action = action.cpu().numpy()
|
||||
next_state, reward, terminated, truncated, all_info = envs.step(action)
|
||||
|
||||
# 存储数据
|
||||
flag = 1.0 - np.logical_or(terminated, truncated)
|
||||
log_prob = log_prob.cpu().numpy()
|
||||
prob = prob.cpu().numpy()
|
||||
value = value.cpu().numpy()
|
||||
rollout_buffer.push(state, action, reward, flag, log_prob, prob, value)
|
||||
state = next_state
|
||||
|
||||
if 'final_info' not in all_info:
|
||||
continue
|
||||
|
||||
# 写入训练过程的数据
|
||||
for info in all_info['final_info']:
|
||||
if info is None:
|
||||
continue
|
||||
if 'episode' in info.keys():
|
||||
writer.add_scalar('charts/episodic_return', info['episode']['r'], global_step)
|
||||
# print(float(info['episode']['r']))
|
||||
break
|
||||
|
||||
# ------------------------------- 上面收集了足够的数据,下面开始更新 ------------------------------- #
|
||||
states, actions, rewards, flags, log_probs, values = rollout_buffer.get()
|
||||
probs = rollout_buffer.get_probs()
|
||||
|
||||
with torch.no_grad():
|
||||
last_value = agent.critic(torch.from_numpy(next_state).to(args.device).float())
|
||||
|
||||
# 计算优势值和TD目标
|
||||
advantages = compute_advantages(rewards, flags, values, last_value, args)
|
||||
td_target = advantages + values
|
||||
|
||||
# 将数据展平
|
||||
states = states.reshape(-1, *observation_shape)
|
||||
actions = actions.reshape(-1)
|
||||
log_probs = log_probs.reshape(-1)
|
||||
probs = probs.reshape((-1, action_dim))
|
||||
td_target = td_target.reshape(-1)
|
||||
advantages = advantages.reshape(-1)
|
||||
values = values.reshape(-1)
|
||||
batch_indexes = np.arange(args.batch_size)
|
||||
|
||||
# 更新策略网络和价值网络
|
||||
for e in range(1, args.update_epochs + 1):
|
||||
numpy_rng.shuffle(batch_indexes)
|
||||
for start in range(0, args.batch_size, args.minibatch_size):
|
||||
end = start + args.minibatch_size
|
||||
index = batch_indexes[start:end]
|
||||
|
||||
# 得到最新的策略网络和价值网络输出
|
||||
new_log_probs, td_predict, entropy, new_probs = agent.evaluate(states[index], actions[index])
|
||||
log_ratio = new_log_probs - log_probs[index]
|
||||
ratios = log_ratio.exp()
|
||||
|
||||
# 计算kl散度
|
||||
d = torch.sum(
|
||||
probs[index] * torch.log((probs[index] + 1e-12) / (new_probs + 1e-12)), 1
|
||||
)
|
||||
writer.add_scalar('charts/average_kld', d.mean(), global_step)
|
||||
writer.add_scalar('others/min_kld', d.min(), global_step)
|
||||
writer.add_scalar('others/max_kld', d.max(), global_step)
|
||||
|
||||
# 优势值标准化
|
||||
b_advantages = advantages[index]
|
||||
b_advantages = (b_advantages - b_advantages.mean()) / (b_advantages.std() + 1e-12)
|
||||
|
||||
# 策略网络损失
|
||||
policy_loss_1 = b_advantages * ratios
|
||||
policy_loss_2 = b_advantages * torch.clamp(
|
||||
ratios, 1.0 - args.clip_epsilon, 1.0 + args.clip_epsilon
|
||||
)
|
||||
policy_loss = -torch.min(policy_loss_1, policy_loss_2).mean()
|
||||
|
||||
# 价值网络损失
|
||||
if args.clip_value_loss:
|
||||
v_loss_un_clipped = (td_predict - td_target[index]) ** 2
|
||||
v_clipped = td_target[index] + torch.clamp(
|
||||
td_predict - td_target[index],
|
||||
-args.clip_epsilon,
|
||||
args.clip_epsilon,
|
||||
)
|
||||
v_loss_clipped = (v_clipped - td_target[index]) ** 2
|
||||
v_loss_max = torch.max(v_loss_un_clipped, v_loss_clipped)
|
||||
value_loss = 0.5 * v_loss_max.mean()
|
||||
else:
|
||||
value_loss = 0.5 * ((td_predict - td_target[index]) ** 2).mean()
|
||||
|
||||
entropy_loss = entropy.mean()
|
||||
|
||||
# 保存训练过程中的一些数据
|
||||
writer.add_scalar('losses/value_loss', value_loss.item(), global_step)
|
||||
writer.add_scalar('losses/policy_loss', policy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/entropy', entropy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/delta', torch.abs(ratios - 1).mean().item(), global_step)
|
||||
|
||||
# 总的损失
|
||||
loss = policy_loss + value_loss * args.c_1 - entropy_loss * args.c_2
|
||||
|
||||
# 更新网络参数
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(agent.parameters(), args.clip_grad_norm)
|
||||
optimizer.step()
|
||||
|
||||
explained_var = (
|
||||
np.nan if torch.var(td_target) == 0 else 1 - torch.var(td_target - values) / torch.var(td_target)
|
||||
)
|
||||
writer.add_scalar('charts/learning_rate', optimizer.param_groups[0]['lr'], global_step)
|
||||
writer.add_scalar('charts/SPS', int(global_step / (time.time() - start_time)), global_step)
|
||||
writer.add_scalar('others/explained_var', explained_var, global_step)
|
||||
|
||||
envs.close()
|
||||
writer.close()
|
||||
|
||||
|
||||
def main():
|
||||
for env_id in ['Breakout']:
|
||||
for seed in [1, 2, 3]:
|
||||
print(env_id, seed)
|
||||
train('ALE/' + env_id + '-v5', seed)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
347
v5/ppo_early_stop.py
Normal file
347
v5/ppo_early_stop.py
Normal file
@ -0,0 +1,347 @@
|
||||
import argparse
|
||||
import os
|
||||
import time
|
||||
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
import torch
|
||||
from stable_baselines3.common.atari_wrappers import FireResetEnv, EpisodicLifeEnv, ClipRewardEnv
|
||||
from torch import nn, optim
|
||||
from torch.distributions import Categorical
|
||||
from torch.nn.utils.clip_grad import clip_grad_norm_
|
||||
from torch.utils.tensorboard.writer import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--exp_name', type=str, default=os.path.basename(__file__).rstrip('.py'))
|
||||
parser.add_argument('--env_id', type=str, default='ALE/Breakout-v5')
|
||||
parser.add_argument('--seed', type=int, default=1)
|
||||
parser.add_argument('--use_cuda', type=bool, default=True)
|
||||
parser.add_argument('--learning_rate', type=float, default=2.5e-4)
|
||||
parser.add_argument('--lr_decay', type=bool, default=True)
|
||||
parser.add_argument('--total_steps', type=int, default=int(1e7))
|
||||
parser.add_argument('--num_envs', type=int, default=8)
|
||||
parser.add_argument('--num_steps', type=int, default=128)
|
||||
parser.add_argument('--update_epochs', type=int, default=8)
|
||||
parser.add_argument('--num_mini_batches', type=int, default=4)
|
||||
parser.add_argument('--gae_lambda', type=float, default=0.95)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--clip_value_loss', type=bool, default=True)
|
||||
parser.add_argument('--c_1', type=float, default=1.0)
|
||||
parser.add_argument('--c_2', type=float, default=0.01)
|
||||
parser.add_argument('--clip_grad_norm', type=float, default=0.5)
|
||||
parser.add_argument('--clip_epsilon', type=float, default=0.2)
|
||||
args = parser.parse_args()
|
||||
args.device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu')
|
||||
args.batch_size = int(args.num_envs * args.num_steps)
|
||||
args.minibatch_size = int(args.batch_size // args.num_mini_batches)
|
||||
args.num_updates = int(args.total_steps // args.batch_size)
|
||||
return args
|
||||
|
||||
|
||||
def make_env(env_id):
|
||||
def thunk():
|
||||
env = gym.make(env_id, frameskip=1, repeat_action_probability=0.0, full_action_space=False)
|
||||
env = gym.wrappers.RecordEpisodeStatistics(env)
|
||||
if 'FIRE' in env.unwrapped.get_action_meanings():
|
||||
env = FireResetEnv(env)
|
||||
env = EpisodicLifeEnv(env)
|
||||
env = ClipRewardEnv(env)
|
||||
env = gym.wrappers.AtariPreprocessing(env, scale_obs=True)
|
||||
env = gym.wrappers.FrameStack(env, 4)
|
||||
return env
|
||||
return thunk
|
||||
|
||||
|
||||
def compute_advantages(rewards, flags, values, last_value, args):
|
||||
advantages = torch.zeros((args.num_steps, args.num_envs)).to(args.device)
|
||||
adv = torch.zeros(args.num_envs).to(args.device)
|
||||
for i in reversed(range(args.num_steps)):
|
||||
returns = rewards[i] + args.gamma * flags[i] * last_value
|
||||
delta = returns - values[i]
|
||||
adv = delta + args.gamma * args.gae_lambda * flags[i] * adv
|
||||
advantages[i] = adv
|
||||
last_value = values[i]
|
||||
return advantages
|
||||
|
||||
|
||||
class Buffer:
|
||||
def __init__(self, num_steps, num_envs, observation_shape, action_dim, device):
|
||||
self.states = np.zeros((num_steps, num_envs, *observation_shape), dtype=np.float32)
|
||||
self.actions = np.zeros((num_steps, num_envs), dtype=np.int64)
|
||||
self.rewards = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.flags = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.log_probs = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.probs = np.zeros((num_steps, num_envs, action_dim), dtype=np.float32)
|
||||
self.values = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.step = 0
|
||||
self.num_steps = num_steps
|
||||
self.device = device
|
||||
|
||||
def push(self, state, action, reward, flag, log_prob, prob, value):
|
||||
self.states[self.step] = state
|
||||
self.actions[self.step] = action
|
||||
self.rewards[self.step] = reward
|
||||
self.flags[self.step] = flag
|
||||
self.log_probs[self.step] = log_prob
|
||||
self.probs[self.step] = prob
|
||||
self.values[self.step] = value
|
||||
self.step = (self.step + 1) % self.num_steps
|
||||
|
||||
def get(self):
|
||||
return (
|
||||
torch.from_numpy(self.states).to(self.device),
|
||||
torch.from_numpy(self.actions).to(self.device),
|
||||
torch.from_numpy(self.rewards).to(self.device),
|
||||
torch.from_numpy(self.flags).to(self.device),
|
||||
torch.from_numpy(self.log_probs).to(self.device),
|
||||
torch.from_numpy(self.values).to(self.device),
|
||||
)
|
||||
|
||||
def get_probs(self):
|
||||
return torch.from_numpy(self.probs).to(self.device)
|
||||
|
||||
|
||||
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
||||
torch.nn.init.orthogonal_(layer.weight, std)
|
||||
torch.nn.init.constant_(layer.bias, bias_const)
|
||||
return layer
|
||||
|
||||
|
||||
class Agent(nn.Module):
|
||||
def __init__(self, action_dim, device):
|
||||
super().__init__()
|
||||
self.encoder = nn.Sequential(
|
||||
layer_init(nn.Conv2d(4, 32, 8, stride=4)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
|
||||
nn.ReLU(),
|
||||
nn.Flatten(),
|
||||
layer_init(nn.Linear(64 * 7 * 7, 512)),
|
||||
nn.ReLU()
|
||||
)
|
||||
self.actor_net = layer_init(nn.Linear(512, action_dim), std=0.01)
|
||||
self.critic_net = layer_init(nn.Linear(512, 1), std=1)
|
||||
|
||||
if device.type == 'cuda':
|
||||
self.cuda()
|
||||
|
||||
def forward(self, state):
|
||||
hidden = self.encoder(state)
|
||||
actor_value = self.actor_net(hidden)
|
||||
distribution = Categorical(logits=actor_value)
|
||||
action = distribution.sample()
|
||||
log_prob = distribution.log_prob(action)
|
||||
value = self.critic_net(hidden).squeeze(-1)
|
||||
return action, log_prob, value, distribution.probs
|
||||
|
||||
def evaluate(self, states, actions):
|
||||
hidden = self.encoder(states)
|
||||
actor_values = self.actor_net(hidden)
|
||||
distribution = Categorical(logits=actor_values)
|
||||
log_probs = distribution.log_prob(actions)
|
||||
entropy = distribution.entropy()
|
||||
values = self.critic_net(hidden).squeeze(-1)
|
||||
return log_probs, values, entropy, distribution.probs
|
||||
|
||||
def critic(self, state):
|
||||
return self.critic_net(self.encoder(state)).squeeze(-1)
|
||||
|
||||
|
||||
def train(env_id, seed):
|
||||
args = get_args()
|
||||
args.env_id = env_id
|
||||
args.seed = seed
|
||||
run_name = (
|
||||
'ppo_es' +
|
||||
'_epoch_' + str(args.update_epochs) +
|
||||
'_seed_' + str(args.seed)
|
||||
)
|
||||
|
||||
# 保存训练日志
|
||||
path_string = str(args.env_id)[4:] + '/' + run_name
|
||||
writer = SummaryWriter(path_string)
|
||||
writer.add_text(
|
||||
'Hyperparameter',
|
||||
'|param|value|\n|-|-|\n%s' % ('\n'.join([f'|{key}|{value}|' for key, value in vars(args).items()])),
|
||||
)
|
||||
|
||||
# 初始化并行环境
|
||||
envs = gym.vector.AsyncVectorEnv([make_env(args.env_id) for _ in range(args.num_envs)])
|
||||
|
||||
# 状态空间和动作空间
|
||||
observation_shape = envs.single_observation_space.shape
|
||||
action_dim = envs.single_action_space.n
|
||||
|
||||
# 随机数种子
|
||||
if args.seed:
|
||||
numpy_rng = np.random.default_rng(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
state, _ = envs.reset(seed=args.seed)
|
||||
else:
|
||||
numpy_rng = np.random.default_rng()
|
||||
state, _ = envs.reset()
|
||||
|
||||
# 价值网络和策略网络
|
||||
agent = Agent(action_dim, args.device)
|
||||
|
||||
# 优化器
|
||||
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate)
|
||||
|
||||
# 存储数据的buffer
|
||||
rollout_buffer = Buffer(args.num_steps, args.num_envs, observation_shape, action_dim, args.device)
|
||||
global_step = 0
|
||||
start_time = time.time()
|
||||
|
||||
# 开始收集数据
|
||||
for _ in tqdm(range(args.num_updates)):
|
||||
|
||||
# 学习率线性递减
|
||||
if args.lr_decay:
|
||||
optimizer.param_groups[0]['lr'] -= (args.learning_rate - 1e-12) / args.num_updates
|
||||
|
||||
for _ in range(args.num_steps):
|
||||
global_step += 1 * args.num_envs
|
||||
|
||||
with torch.no_grad():
|
||||
action, log_prob, value, prob = agent(torch.from_numpy(state).to(args.device).float())
|
||||
|
||||
action = action.cpu().numpy()
|
||||
next_state, reward, terminated, truncated, all_info = envs.step(action)
|
||||
|
||||
# 存储数据
|
||||
flag = 1.0 - np.logical_or(terminated, truncated)
|
||||
log_prob = log_prob.cpu().numpy()
|
||||
prob = prob.cpu().numpy()
|
||||
value = value.cpu().numpy()
|
||||
rollout_buffer.push(state, action, reward, flag, log_prob, prob, value)
|
||||
state = next_state
|
||||
|
||||
if 'final_info' not in all_info:
|
||||
continue
|
||||
|
||||
# 写入训练过程的数据
|
||||
for info in all_info['final_info']:
|
||||
if info is None:
|
||||
continue
|
||||
if 'episode' in info.keys():
|
||||
writer.add_scalar('charts/episodic_return', info['episode']['r'], global_step)
|
||||
# print(float(info['episode']['r']))
|
||||
break
|
||||
|
||||
# ------------------------------- 上面收集了足够的数据,下面开始更新 ------------------------------- #
|
||||
states, actions, rewards, flags, log_probs, values = rollout_buffer.get()
|
||||
probs = rollout_buffer.get_probs()
|
||||
|
||||
with torch.no_grad():
|
||||
last_value = agent.critic(torch.from_numpy(next_state).to(args.device).float())
|
||||
|
||||
# 计算优势值和TD目标
|
||||
advantages = compute_advantages(rewards, flags, values, last_value, args)
|
||||
td_target = advantages + values
|
||||
|
||||
# 将数据展平
|
||||
states = states.reshape(-1, *observation_shape)
|
||||
actions = actions.reshape(-1)
|
||||
log_probs = log_probs.reshape(-1)
|
||||
probs = probs.reshape((-1, action_dim))
|
||||
td_target = td_target.reshape(-1)
|
||||
advantages = advantages.reshape(-1)
|
||||
values = values.reshape(-1)
|
||||
batch_indexes = np.arange(args.batch_size)
|
||||
|
||||
# 更新策略网络和价值网络
|
||||
flag = True
|
||||
for e in range(1, args.update_epochs + 1):
|
||||
numpy_rng.shuffle(batch_indexes)
|
||||
for start in range(0, args.batch_size, args.minibatch_size):
|
||||
end = start + args.minibatch_size
|
||||
index = batch_indexes[start:end]
|
||||
|
||||
# 得到最新的策略网络和价值网络输出
|
||||
new_log_probs, td_predict, entropy, new_probs = agent.evaluate(states[index], actions[index])
|
||||
log_ratio = new_log_probs - log_probs[index]
|
||||
ratios = log_ratio.exp()
|
||||
|
||||
# 计算kl散度
|
||||
d = torch.sum(
|
||||
probs[index] * torch.log((probs[index] + 1e-12) / (new_probs + 1e-12)), 1
|
||||
)
|
||||
writer.add_scalar('charts/average_kld', d.mean(), global_step)
|
||||
writer.add_scalar('others/min_kld', d.min(), global_step)
|
||||
writer.add_scalar('others/max_kld', d.max(), global_step)
|
||||
|
||||
# 早停策略
|
||||
if d.mean() > 0.02:
|
||||
flag = False
|
||||
break
|
||||
|
||||
# 优势值标准化
|
||||
b_advantages = advantages[index]
|
||||
b_advantages = (b_advantages - b_advantages.mean()) / (b_advantages.std() + 1e-12)
|
||||
|
||||
# 策略网络损失
|
||||
policy_loss_1 = b_advantages * ratios
|
||||
policy_loss_2 = b_advantages * torch.clamp(
|
||||
ratios, 1.0 - args.clip_epsilon, 1.0 + args.clip_epsilon
|
||||
)
|
||||
policy_loss = -torch.min(policy_loss_1, policy_loss_2).mean()
|
||||
|
||||
# 价值网络损失
|
||||
if args.clip_value_loss:
|
||||
v_loss_un_clipped = (td_predict - td_target[index]) ** 2
|
||||
v_clipped = td_target[index] + torch.clamp(
|
||||
td_predict - td_target[index],
|
||||
-args.clip_epsilon,
|
||||
args.clip_epsilon,
|
||||
)
|
||||
v_loss_clipped = (v_clipped - td_target[index]) ** 2
|
||||
v_loss_max = torch.max(v_loss_un_clipped, v_loss_clipped)
|
||||
value_loss = 0.5 * v_loss_max.mean()
|
||||
else:
|
||||
value_loss = 0.5 * ((td_predict - td_target[index]) ** 2).mean()
|
||||
|
||||
entropy_loss = entropy.mean()
|
||||
|
||||
# 保存训练过程中的一些数据
|
||||
writer.add_scalar('losses/value_loss', value_loss.item(), global_step)
|
||||
writer.add_scalar('losses/policy_loss', policy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/entropy', entropy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/delta', torch.abs(ratios - 1).mean().item(), global_step)
|
||||
|
||||
# 总的损失
|
||||
loss = policy_loss + value_loss * args.c_1 - entropy_loss * args.c_2
|
||||
|
||||
# 更新网络参数
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(agent.parameters(), args.clip_grad_norm)
|
||||
optimizer.step()
|
||||
|
||||
if flag is False:
|
||||
break
|
||||
|
||||
explained_var = (
|
||||
np.nan if torch.var(td_target) == 0 else 1 - torch.var(td_target - values) / torch.var(td_target)
|
||||
)
|
||||
writer.add_scalar('charts/learning_rate', optimizer.param_groups[0]['lr'], global_step)
|
||||
writer.add_scalar('charts/SPS', int(global_step / (time.time() - start_time)), global_step)
|
||||
writer.add_scalar('others/explained_var', explained_var, global_step)
|
||||
|
||||
envs.close()
|
||||
writer.close()
|
||||
|
||||
|
||||
def main():
|
||||
for env_id in ['Breakout']:
|
||||
for seed in [1, 2, 3]:
|
||||
print(env_id, seed)
|
||||
train('ALE/' + env_id + '-v5', seed)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
339
v5/ppo_penalty.py
Normal file
339
v5/ppo_penalty.py
Normal file
@ -0,0 +1,339 @@
|
||||
import argparse
|
||||
import os
|
||||
import time
|
||||
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
import torch
|
||||
from stable_baselines3.common.atari_wrappers import FireResetEnv, EpisodicLifeEnv, ClipRewardEnv
|
||||
from torch import nn, optim
|
||||
from torch.distributions import Categorical
|
||||
from torch.nn.utils.clip_grad import clip_grad_norm_
|
||||
from torch.utils.tensorboard.writer import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--exp_name', type=str, default=os.path.basename(__file__).rstrip('.py'))
|
||||
parser.add_argument('--env_id', type=str, default='ALE/Breakout-v5')
|
||||
parser.add_argument('--seed', type=int, default=1)
|
||||
parser.add_argument('--use_cuda', type=bool, default=True)
|
||||
parser.add_argument('--learning_rate', type=float, default=2.5e-4)
|
||||
parser.add_argument('--lr_decay', type=bool, default=True)
|
||||
parser.add_argument('--total_steps', type=int, default=int(1e7))
|
||||
parser.add_argument('--num_envs', type=int, default=8)
|
||||
parser.add_argument('--num_steps', type=int, default=128)
|
||||
parser.add_argument('--update_epochs', type=int, default=8)
|
||||
parser.add_argument('--num_mini_batches', type=int, default=4)
|
||||
parser.add_argument('--gae_lambda', type=float, default=0.95)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--clip_value_loss', type=bool, default=True)
|
||||
parser.add_argument('--c_1', type=float, default=1.0)
|
||||
parser.add_argument('--c_2', type=float, default=0.01)
|
||||
parser.add_argument('--clip_grad_norm', type=float, default=0.5)
|
||||
parser.add_argument('--beta', type=float, default=1.0)
|
||||
args = parser.parse_args()
|
||||
args.device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu')
|
||||
args.batch_size = int(args.num_envs * args.num_steps)
|
||||
args.minibatch_size = int(args.batch_size // args.num_mini_batches)
|
||||
args.num_updates = int(args.total_steps // args.batch_size)
|
||||
return args
|
||||
|
||||
|
||||
def make_env(env_id):
|
||||
def thunk():
|
||||
env = gym.make(env_id, frameskip=1, repeat_action_probability=0.0, full_action_space=False)
|
||||
env = gym.wrappers.RecordEpisodeStatistics(env)
|
||||
if 'FIRE' in env.unwrapped.get_action_meanings():
|
||||
env = FireResetEnv(env)
|
||||
env = EpisodicLifeEnv(env)
|
||||
env = ClipRewardEnv(env)
|
||||
env = gym.wrappers.AtariPreprocessing(env, scale_obs=True)
|
||||
env = gym.wrappers.FrameStack(env, 4)
|
||||
return env
|
||||
return thunk
|
||||
|
||||
|
||||
def compute_advantages(rewards, flags, values, last_value, args):
|
||||
advantages = torch.zeros((args.num_steps, args.num_envs)).to(args.device)
|
||||
adv = torch.zeros(args.num_envs).to(args.device)
|
||||
for i in reversed(range(args.num_steps)):
|
||||
returns = rewards[i] + args.gamma * flags[i] * last_value
|
||||
delta = returns - values[i]
|
||||
adv = delta + args.gamma * args.gae_lambda * flags[i] * adv
|
||||
advantages[i] = adv
|
||||
last_value = values[i]
|
||||
return advantages
|
||||
|
||||
|
||||
class Buffer:
|
||||
def __init__(self, num_steps, num_envs, observation_shape, action_dim, device):
|
||||
self.states = np.zeros((num_steps, num_envs, *observation_shape), dtype=np.float32)
|
||||
self.actions = np.zeros((num_steps, num_envs), dtype=np.int64)
|
||||
self.rewards = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.flags = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.log_probs = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.probs = np.zeros((num_steps, num_envs, action_dim), dtype=np.float32)
|
||||
self.values = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.step = 0
|
||||
self.num_steps = num_steps
|
||||
self.device = device
|
||||
|
||||
def push(self, state, action, reward, flag, log_prob, prob, value):
|
||||
self.states[self.step] = state
|
||||
self.actions[self.step] = action
|
||||
self.rewards[self.step] = reward
|
||||
self.flags[self.step] = flag
|
||||
self.log_probs[self.step] = log_prob
|
||||
self.probs[self.step] = prob
|
||||
self.values[self.step] = value
|
||||
self.step = (self.step + 1) % self.num_steps
|
||||
|
||||
def get(self):
|
||||
return (
|
||||
torch.from_numpy(self.states).to(self.device),
|
||||
torch.from_numpy(self.actions).to(self.device),
|
||||
torch.from_numpy(self.rewards).to(self.device),
|
||||
torch.from_numpy(self.flags).to(self.device),
|
||||
torch.from_numpy(self.log_probs).to(self.device),
|
||||
torch.from_numpy(self.values).to(self.device),
|
||||
)
|
||||
|
||||
def get_probs(self):
|
||||
return torch.from_numpy(self.probs).to(self.device)
|
||||
|
||||
|
||||
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
||||
torch.nn.init.orthogonal_(layer.weight, std)
|
||||
torch.nn.init.constant_(layer.bias, bias_const)
|
||||
return layer
|
||||
|
||||
|
||||
class Agent(nn.Module):
|
||||
def __init__(self, action_dim, device):
|
||||
super().__init__()
|
||||
self.encoder = nn.Sequential(
|
||||
layer_init(nn.Conv2d(4, 32, 8, stride=4)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
|
||||
nn.ReLU(),
|
||||
nn.Flatten(),
|
||||
layer_init(nn.Linear(64 * 7 * 7, 512)),
|
||||
nn.ReLU()
|
||||
)
|
||||
self.actor_net = layer_init(nn.Linear(512, action_dim), std=0.01)
|
||||
self.critic_net = layer_init(nn.Linear(512, 1), std=1)
|
||||
|
||||
if device.type == 'cuda':
|
||||
self.cuda()
|
||||
|
||||
def forward(self, state):
|
||||
hidden = self.encoder(state)
|
||||
actor_value = self.actor_net(hidden)
|
||||
distribution = Categorical(logits=actor_value)
|
||||
action = distribution.sample()
|
||||
log_prob = distribution.log_prob(action)
|
||||
value = self.critic_net(hidden).squeeze(-1)
|
||||
return action, log_prob, value, distribution.probs
|
||||
|
||||
def evaluate(self, states, actions):
|
||||
hidden = self.encoder(states)
|
||||
actor_values = self.actor_net(hidden)
|
||||
distribution = Categorical(logits=actor_values)
|
||||
log_probs = distribution.log_prob(actions)
|
||||
entropy = distribution.entropy()
|
||||
values = self.critic_net(hidden).squeeze(-1)
|
||||
return log_probs, values, entropy, distribution.probs
|
||||
|
||||
def critic(self, state):
|
||||
return self.critic_net(self.encoder(state)).squeeze(-1)
|
||||
|
||||
|
||||
def train(env_id, seed):
|
||||
args = get_args()
|
||||
args.env_id = env_id
|
||||
args.seed = seed
|
||||
run_name = (
|
||||
'ppo_penalty' +
|
||||
'_epoch_' + str(args.update_epochs) +
|
||||
'_seed_' + str(args.seed)
|
||||
)
|
||||
|
||||
# 保存训练日志
|
||||
path_string = str(args.env_id)[4:] + '/' + run_name
|
||||
writer = SummaryWriter(path_string)
|
||||
writer.add_text(
|
||||
'Hyperparameter',
|
||||
'|param|value|\n|-|-|\n%s' % ('\n'.join([f'|{key}|{value}|' for key, value in vars(args).items()])),
|
||||
)
|
||||
|
||||
# 初始化并行环境
|
||||
envs = gym.vector.AsyncVectorEnv([make_env(args.env_id) for _ in range(args.num_envs)])
|
||||
|
||||
# 状态空间和动作空间
|
||||
observation_shape = envs.single_observation_space.shape
|
||||
action_dim = envs.single_action_space.n
|
||||
|
||||
# 随机数种子
|
||||
if args.seed:
|
||||
numpy_rng = np.random.default_rng(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
state, _ = envs.reset(seed=args.seed)
|
||||
else:
|
||||
numpy_rng = np.random.default_rng()
|
||||
state, _ = envs.reset()
|
||||
|
||||
# 价值网络和策略网络
|
||||
agent = Agent(action_dim, args.device)
|
||||
|
||||
# 优化器
|
||||
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate)
|
||||
|
||||
# 存储数据的buffer
|
||||
rollout_buffer = Buffer(args.num_steps, args.num_envs, observation_shape, action_dim, args.device)
|
||||
global_step = 0
|
||||
start_time = time.time()
|
||||
|
||||
# 开始收集数据
|
||||
for _ in tqdm(range(args.num_updates)):
|
||||
|
||||
# 学习率线性递减
|
||||
if args.lr_decay:
|
||||
optimizer.param_groups[0]['lr'] -= (args.learning_rate - 1e-12) / args.num_updates
|
||||
|
||||
for _ in range(args.num_steps):
|
||||
global_step += 1 * args.num_envs
|
||||
|
||||
with torch.no_grad():
|
||||
action, log_prob, value, prob = agent(torch.from_numpy(state).to(args.device).float())
|
||||
|
||||
action = action.cpu().numpy()
|
||||
next_state, reward, terminated, truncated, all_info = envs.step(action)
|
||||
|
||||
# 存储数据
|
||||
flag = 1.0 - np.logical_or(terminated, truncated)
|
||||
log_prob = log_prob.cpu().numpy()
|
||||
prob = prob.cpu().numpy()
|
||||
value = value.cpu().numpy()
|
||||
rollout_buffer.push(state, action, reward, flag, log_prob, prob, value)
|
||||
state = next_state
|
||||
|
||||
if 'final_info' not in all_info:
|
||||
continue
|
||||
|
||||
# 写入训练过程的数据
|
||||
for info in all_info['final_info']:
|
||||
if info is None:
|
||||
continue
|
||||
if 'episode' in info.keys():
|
||||
writer.add_scalar('charts/episodic_return', info['episode']['r'], global_step)
|
||||
# print(float(info['episode']['r']))
|
||||
break
|
||||
|
||||
# ------------------------------- 上面收集了足够的数据,下面开始更新 ------------------------------- #
|
||||
states, actions, rewards, flags, log_probs, values = rollout_buffer.get()
|
||||
probs = rollout_buffer.get_probs()
|
||||
|
||||
with torch.no_grad():
|
||||
last_value = agent.critic(torch.from_numpy(next_state).to(args.device).float())
|
||||
|
||||
# 计算优势值和TD目标
|
||||
advantages = compute_advantages(rewards, flags, values, last_value, args)
|
||||
td_target = advantages + values
|
||||
|
||||
# 将数据展平
|
||||
states = states.reshape(-1, *observation_shape)
|
||||
actions = actions.reshape(-1)
|
||||
log_probs = log_probs.reshape(-1)
|
||||
probs = probs.reshape((-1, action_dim))
|
||||
td_target = td_target.reshape(-1)
|
||||
advantages = advantages.reshape(-1)
|
||||
values = values.reshape(-1)
|
||||
batch_indexes = np.arange(args.batch_size)
|
||||
|
||||
# 更新策略网络和价值网络
|
||||
for e in range(1, args.update_epochs + 1):
|
||||
numpy_rng.shuffle(batch_indexes)
|
||||
for start in range(0, args.batch_size, args.minibatch_size):
|
||||
end = start + args.minibatch_size
|
||||
index = batch_indexes[start:end]
|
||||
|
||||
# 得到最新的策略网络和价值网络输出
|
||||
new_log_probs, td_predict, entropy, new_probs = agent.evaluate(states[index], actions[index])
|
||||
log_ratio = new_log_probs - log_probs[index]
|
||||
ratios = log_ratio.exp()
|
||||
|
||||
# 计算kl散度
|
||||
d = torch.sum(
|
||||
probs[index] * torch.log((probs[index] + 1e-12) / (new_probs + 1e-12)), 1
|
||||
)
|
||||
writer.add_scalar('charts/average_kld', d.mean(), global_step)
|
||||
writer.add_scalar('others/min_kld', d.min(), global_step)
|
||||
writer.add_scalar('others/max_kld', d.max(), global_step)
|
||||
|
||||
# 优势值标准化
|
||||
b_advantages = advantages[index]
|
||||
b_advantages = (b_advantages - b_advantages.mean()) / (b_advantages.std() + 1e-12)
|
||||
|
||||
# 策略网络损失
|
||||
if d.mean() < 0.02 / 1.5:
|
||||
args.beta = args.beta / 2
|
||||
if d.mean() > 0.02 * 1.5:
|
||||
args.beta = args.beta * 2
|
||||
|
||||
policy_loss = -(b_advantages * ratios - args.beta * d).mean()
|
||||
|
||||
# 价值网络损失
|
||||
if args.clip_value_loss:
|
||||
v_loss_un_clipped = (td_predict - td_target[index]) ** 2
|
||||
v_clipped = td_target[index] + torch.clamp(
|
||||
td_predict - td_target[index],
|
||||
-0.2,
|
||||
0.2,
|
||||
)
|
||||
v_loss_clipped = (v_clipped - td_target[index]) ** 2
|
||||
v_loss_max = torch.max(v_loss_un_clipped, v_loss_clipped)
|
||||
value_loss = 0.5 * v_loss_max.mean()
|
||||
else:
|
||||
value_loss = 0.5 * ((td_predict - td_target[index]) ** 2).mean()
|
||||
|
||||
entropy_loss = entropy.mean()
|
||||
|
||||
# 保存训练过程中的一些数据
|
||||
writer.add_scalar('losses/value_loss', value_loss.item(), global_step)
|
||||
writer.add_scalar('losses/policy_loss', policy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/entropy', entropy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/delta', torch.abs(ratios - 1).mean().item(), global_step)
|
||||
|
||||
# 总的损失
|
||||
loss = policy_loss + value_loss * args.c_1 - entropy_loss * args.c_2
|
||||
|
||||
# 更新网络参数
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(agent.parameters(), args.clip_grad_norm)
|
||||
optimizer.step()
|
||||
|
||||
explained_var = (
|
||||
np.nan if torch.var(td_target) == 0 else 1 - torch.var(td_target - values) / torch.var(td_target)
|
||||
)
|
||||
writer.add_scalar('charts/learning_rate', optimizer.param_groups[0]['lr'], global_step)
|
||||
writer.add_scalar('charts/SPS', int(global_step / (time.time() - start_time)), global_step)
|
||||
writer.add_scalar('others/explained_var', explained_var, global_step)
|
||||
|
||||
envs.close()
|
||||
writer.close()
|
||||
|
||||
|
||||
def main():
|
||||
for env_id in ['Breakout']:
|
||||
for seed in [1, 2, 3]:
|
||||
print(env_id, seed)
|
||||
train('ALE/' + env_id + '-v5', seed)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
348
v5/spo.py
Normal file
348
v5/spo.py
Normal file
@ -0,0 +1,348 @@
|
||||
import argparse
|
||||
import os
|
||||
import time
|
||||
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
import torch
|
||||
from stable_baselines3.common.atari_wrappers import FireResetEnv, EpisodicLifeEnv, ClipRewardEnv
|
||||
from torch import nn, optim
|
||||
from torch.distributions import Categorical
|
||||
from torch.nn.utils.clip_grad import clip_grad_norm_
|
||||
from torch.utils.tensorboard.writer import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--exp_name', type=str, default=os.path.basename(__file__).rstrip('.py'))
|
||||
parser.add_argument('--env_id', type=str, default='ALE/Breakout-v5')
|
||||
parser.add_argument('--seed', type=int, default=1)
|
||||
parser.add_argument('--use_cuda', type=bool, default=True)
|
||||
parser.add_argument('--learning_rate', type=float, default=2.5e-4)
|
||||
parser.add_argument('--lr_decay', type=bool, default=True)
|
||||
parser.add_argument('--total_steps', type=int, default=int(1e7))
|
||||
parser.add_argument('--num_envs', type=int, default=8)
|
||||
parser.add_argument('--num_steps', type=int, default=128)
|
||||
parser.add_argument('--update_epochs', type=int, default=8)
|
||||
parser.add_argument('--num_mini_batches', type=int, default=4)
|
||||
parser.add_argument('--gae_lambda', type=float, default=0.95)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--clip_value_loss', type=bool, default=True)
|
||||
parser.add_argument('--c_1', type=float, default=1.0)
|
||||
parser.add_argument('--c_2', type=float, default=0.01)
|
||||
parser.add_argument('--clip_grad_norm', type=float, default=0.5)
|
||||
parser.add_argument('--kld_max', type=float, default=0.01)
|
||||
args = parser.parse_args()
|
||||
args.device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu')
|
||||
args.batch_size = int(args.num_envs * args.num_steps)
|
||||
args.minibatch_size = int(args.batch_size // args.num_mini_batches)
|
||||
args.num_updates = int(args.total_steps // args.batch_size)
|
||||
return args
|
||||
|
||||
|
||||
def make_env(env_id):
|
||||
def thunk():
|
||||
env = gym.make(env_id, frameskip=1, repeat_action_probability=0.0, full_action_space=False)
|
||||
env = gym.wrappers.RecordEpisodeStatistics(env)
|
||||
if 'FIRE' in env.unwrapped.get_action_meanings():
|
||||
env = FireResetEnv(env)
|
||||
env = EpisodicLifeEnv(env)
|
||||
env = ClipRewardEnv(env)
|
||||
env = gym.wrappers.AtariPreprocessing(env, scale_obs=True)
|
||||
env = gym.wrappers.FrameStack(env, 4)
|
||||
return env
|
||||
return thunk
|
||||
|
||||
|
||||
def compute_advantages(rewards, flags, values, last_value, args):
|
||||
advantages = torch.zeros((args.num_steps, args.num_envs)).to(args.device)
|
||||
adv = torch.zeros(args.num_envs).to(args.device)
|
||||
for i in reversed(range(args.num_steps)):
|
||||
returns = rewards[i] + args.gamma * flags[i] * last_value
|
||||
delta = returns - values[i]
|
||||
adv = delta + args.gamma * args.gae_lambda * flags[i] * adv
|
||||
advantages[i] = adv
|
||||
last_value = values[i]
|
||||
return advantages
|
||||
|
||||
|
||||
class Buffer:
|
||||
def __init__(self, num_steps, num_envs, observation_shape, action_dim, device):
|
||||
self.states = np.zeros((num_steps, num_envs, *observation_shape), dtype=np.float32)
|
||||
self.actions = np.zeros((num_steps, num_envs), dtype=np.int64)
|
||||
self.rewards = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.flags = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.log_probs = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.probs = np.zeros((num_steps, num_envs, action_dim), dtype=np.float32)
|
||||
self.values = np.zeros((num_steps, num_envs), dtype=np.float32)
|
||||
self.step = 0
|
||||
self.num_steps = num_steps
|
||||
self.device = device
|
||||
|
||||
def push(self, state, action, reward, flag, log_prob, prob, value):
|
||||
self.states[self.step] = state
|
||||
self.actions[self.step] = action
|
||||
self.rewards[self.step] = reward
|
||||
self.flags[self.step] = flag
|
||||
self.log_probs[self.step] = log_prob
|
||||
self.probs[self.step] = prob
|
||||
self.values[self.step] = value
|
||||
self.step = (self.step + 1) % self.num_steps
|
||||
|
||||
def get(self):
|
||||
return (
|
||||
torch.from_numpy(self.states).to(self.device),
|
||||
torch.from_numpy(self.actions).to(self.device),
|
||||
torch.from_numpy(self.rewards).to(self.device),
|
||||
torch.from_numpy(self.flags).to(self.device),
|
||||
torch.from_numpy(self.log_probs).to(self.device),
|
||||
torch.from_numpy(self.values).to(self.device),
|
||||
)
|
||||
|
||||
def get_probs(self):
|
||||
return torch.from_numpy(self.probs).to(self.device)
|
||||
|
||||
|
||||
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
||||
torch.nn.init.orthogonal_(layer.weight, std)
|
||||
torch.nn.init.constant_(layer.bias, bias_const)
|
||||
return layer
|
||||
|
||||
|
||||
class Agent(nn.Module):
|
||||
def __init__(self, action_dim, device):
|
||||
super().__init__()
|
||||
self.encoder = nn.Sequential(
|
||||
layer_init(nn.Conv2d(4, 32, 8, stride=4)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
|
||||
nn.ReLU(),
|
||||
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
|
||||
nn.ReLU(),
|
||||
nn.Flatten(),
|
||||
layer_init(nn.Linear(64 * 7 * 7, 512)),
|
||||
nn.ReLU()
|
||||
)
|
||||
self.actor_net = layer_init(nn.Linear(512, action_dim), std=0.01)
|
||||
self.critic_net = layer_init(nn.Linear(512, 1), std=1)
|
||||
|
||||
if device.type == 'cuda':
|
||||
self.cuda()
|
||||
|
||||
def forward(self, state):
|
||||
hidden = self.encoder(state)
|
||||
actor_value = self.actor_net(hidden)
|
||||
distribution = Categorical(logits=actor_value)
|
||||
action = distribution.sample()
|
||||
log_prob = distribution.log_prob(action)
|
||||
value = self.critic_net(hidden).squeeze(-1)
|
||||
return action, log_prob, value, distribution.probs
|
||||
|
||||
def evaluate(self, states, actions):
|
||||
hidden = self.encoder(states)
|
||||
actor_values = self.actor_net(hidden)
|
||||
distribution = Categorical(logits=actor_values)
|
||||
log_probs = distribution.log_prob(actions)
|
||||
entropy = distribution.entropy()
|
||||
values = self.critic_net(hidden).squeeze(-1)
|
||||
return log_probs, values, entropy, distribution.probs
|
||||
|
||||
def critic(self, state):
|
||||
return self.critic_net(self.encoder(state)).squeeze(-1)
|
||||
|
||||
|
||||
def train(env_id, seed):
|
||||
args = get_args()
|
||||
args.env_id = env_id
|
||||
args.seed = seed
|
||||
run_name = (
|
||||
'spo_' + str(args.kld_max) +
|
||||
'_epoch_' + str(args.update_epochs) +
|
||||
'_seed_' + str(args.seed)
|
||||
)
|
||||
|
||||
# 保存训练日志
|
||||
path_string = str(args.env_id)[4:] + '/' + run_name
|
||||
writer = SummaryWriter(path_string)
|
||||
writer.add_text(
|
||||
'Hyperparameter',
|
||||
'|param|value|\n|-|-|\n%s' % ('\n'.join([f'|{key}|{value}|' for key, value in vars(args).items()])),
|
||||
)
|
||||
|
||||
# 初始化并行环境
|
||||
envs = gym.vector.AsyncVectorEnv([make_env(args.env_id) for _ in range(args.num_envs)])
|
||||
|
||||
# 状态空间和动作空间
|
||||
observation_shape = envs.single_observation_space.shape
|
||||
action_dim = envs.single_action_space.n
|
||||
|
||||
# 随机数种子
|
||||
if args.seed:
|
||||
numpy_rng = np.random.default_rng(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
state, _ = envs.reset(seed=args.seed)
|
||||
else:
|
||||
numpy_rng = np.random.default_rng()
|
||||
state, _ = envs.reset()
|
||||
|
||||
# 价值网络和策略网络
|
||||
agent = Agent(action_dim, args.device)
|
||||
|
||||
# 优化器
|
||||
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate)
|
||||
|
||||
# 存储数据的buffer
|
||||
rollout_buffer = Buffer(args.num_steps, args.num_envs, observation_shape, action_dim, args.device)
|
||||
global_step = 0
|
||||
start_time = time.time()
|
||||
|
||||
# 开始收集数据
|
||||
for _ in tqdm(range(args.num_updates)):
|
||||
|
||||
# 学习率线性递减
|
||||
if args.lr_decay:
|
||||
optimizer.param_groups[0]['lr'] -= (args.learning_rate - 1e-12) / args.num_updates
|
||||
|
||||
for _ in range(args.num_steps):
|
||||
global_step += 1 * args.num_envs
|
||||
|
||||
with torch.no_grad():
|
||||
action, log_prob, value, prob = agent(torch.from_numpy(state).to(args.device).float())
|
||||
|
||||
action = action.cpu().numpy()
|
||||
next_state, reward, terminated, truncated, all_info = envs.step(action)
|
||||
|
||||
# 存储数据
|
||||
flag = 1.0 - np.logical_or(terminated, truncated)
|
||||
log_prob = log_prob.cpu().numpy()
|
||||
prob = prob.cpu().numpy()
|
||||
value = value.cpu().numpy()
|
||||
rollout_buffer.push(state, action, reward, flag, log_prob, prob, value)
|
||||
state = next_state
|
||||
|
||||
if 'final_info' not in all_info:
|
||||
continue
|
||||
|
||||
# 写入训练过程的数据
|
||||
for info in all_info['final_info']:
|
||||
if info is None:
|
||||
continue
|
||||
if 'episode' in info.keys():
|
||||
writer.add_scalar('charts/episodic_return', info['episode']['r'], global_step)
|
||||
# print(float(info['episode']['r']))
|
||||
break
|
||||
|
||||
# ------------------------------- 上面收集了足够的数据,下面开始更新 ------------------------------- #
|
||||
states, actions, rewards, flags, log_probs, values = rollout_buffer.get()
|
||||
probs = rollout_buffer.get_probs()
|
||||
|
||||
with torch.no_grad():
|
||||
last_value = agent.critic(torch.from_numpy(next_state).to(args.device).float())
|
||||
|
||||
# 计算优势值和TD目标
|
||||
advantages = compute_advantages(rewards, flags, values, last_value, args)
|
||||
td_target = advantages + values
|
||||
|
||||
# 将数据展平
|
||||
states = states.reshape(-1, *observation_shape)
|
||||
actions = actions.reshape(-1)
|
||||
log_probs = log_probs.reshape(-1)
|
||||
probs = probs.reshape((-1, action_dim))
|
||||
td_target = td_target.reshape(-1)
|
||||
advantages = advantages.reshape(-1)
|
||||
values = values.reshape(-1)
|
||||
batch_indexes = np.arange(args.batch_size)
|
||||
|
||||
# 更新策略网络和价值网络
|
||||
for e in range(1, args.update_epochs + 1):
|
||||
numpy_rng.shuffle(batch_indexes)
|
||||
t = 0
|
||||
for start in range(0, args.batch_size, args.minibatch_size):
|
||||
t += 1
|
||||
end = start + args.minibatch_size
|
||||
index = batch_indexes[start:end]
|
||||
|
||||
# 得到最新的策略网络和价值网络输出
|
||||
new_log_probs, td_predict, entropy, new_probs = agent.evaluate(states[index], actions[index])
|
||||
log_ratio = new_log_probs - log_probs[index]
|
||||
ratios = log_ratio.exp()
|
||||
|
||||
# 计算kl散度
|
||||
d = torch.sum(
|
||||
probs[index] * torch.log((probs[index] + 1e-12) / (new_probs + 1e-12)), 1
|
||||
)
|
||||
writer.add_scalar('charts/average_kld', d.mean(), global_step)
|
||||
writer.add_scalar('others/min_kld', d.min(), global_step)
|
||||
writer.add_scalar('others/max_kld', d.max(), global_step)
|
||||
|
||||
# 优势值标准化
|
||||
b_advantages = advantages[index]
|
||||
b_advantages = (b_advantages - b_advantages.mean()) / (b_advantages.std() + 1e-12)
|
||||
|
||||
# 策略网络和价值网络损失
|
||||
if e == 1 and t == 1:
|
||||
policy_loss = (-b_advantages * ratios).mean()
|
||||
else:
|
||||
# d_clip
|
||||
d_clip = torch.clamp(input=d, min=0, max=args.kld_max)
|
||||
# d_clip / d
|
||||
ratio = d_clip / (d + 1e-12)
|
||||
# sign_a
|
||||
sign_a = torch.sign(b_advantages)
|
||||
# (d_clip / d + sign_a - 1) * sign_a
|
||||
result = (ratio + sign_a - 1) * sign_a
|
||||
# 策略网络损失
|
||||
policy_loss = (-b_advantages * ratios * result).mean()
|
||||
|
||||
# 价值网络损失
|
||||
if args.clip_value_loss:
|
||||
v_loss_un_clipped = (td_predict - td_target[index]) ** 2
|
||||
v_clipped = td_target[index] + torch.clamp(
|
||||
td_predict - td_target[index],
|
||||
-0.2,
|
||||
0.2,
|
||||
)
|
||||
v_loss_clipped = (v_clipped - td_target[index]) ** 2
|
||||
v_loss_max = torch.max(v_loss_un_clipped, v_loss_clipped)
|
||||
value_loss = 0.5 * v_loss_max.mean()
|
||||
else:
|
||||
value_loss = 0.5 * ((td_predict - td_target[index]) ** 2).mean()
|
||||
|
||||
entropy_loss = entropy.mean()
|
||||
|
||||
# 保存训练过程中的一些数据
|
||||
writer.add_scalar('losses/value_loss', value_loss.item(), global_step)
|
||||
writer.add_scalar('losses/policy_loss', policy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/entropy', entropy_loss.item(), global_step)
|
||||
writer.add_scalar('losses/delta', torch.abs(ratios - 1).mean().item(), global_step)
|
||||
|
||||
# 总的损失
|
||||
loss = policy_loss + value_loss * args.c_1 - entropy_loss * args.c_2
|
||||
|
||||
# 更新网络参数
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(agent.parameters(), args.clip_grad_norm)
|
||||
optimizer.step()
|
||||
|
||||
explained_var = (
|
||||
np.nan if torch.var(td_target) == 0 else 1 - torch.var(td_target - values) / torch.var(td_target)
|
||||
)
|
||||
writer.add_scalar('charts/learning_rate', optimizer.param_groups[0]['lr'], global_step)
|
||||
writer.add_scalar('charts/SPS', int(global_step / (time.time() - start_time)), global_step)
|
||||
writer.add_scalar('others/explained_var', explained_var, global_step)
|
||||
|
||||
envs.close()
|
||||
writer.close()
|
||||
|
||||
|
||||
def main():
|
||||
for env_id in ['Breakout']:
|
||||
for seed in [1, 2, 3]:
|
||||
print(env_id, seed)
|
||||
train('ALE/' + env_id + '-v5', seed)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user