340 lines
14 KiB
Python
340 lines
14 KiB
Python
import argparse
|
|
import os
|
|
import time
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from stable_baselines3.common.atari_wrappers import FireResetEnv, EpisodicLifeEnv, ClipRewardEnv
|
|
from torch import nn, optim
|
|
from torch.distributions import Categorical
|
|
from torch.nn.utils.clip_grad import clip_grad_norm_
|
|
from torch.utils.tensorboard.writer import SummaryWriter
|
|
from tqdm import tqdm
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--exp_name', type=str, default=os.path.basename(__file__).rstrip('.py'))
|
|
parser.add_argument('--env_id', type=str, default='ALE/Breakout-v5')
|
|
parser.add_argument('--seed', type=int, default=1)
|
|
parser.add_argument('--use_cuda', type=bool, default=True)
|
|
parser.add_argument('--learning_rate', type=float, default=2.5e-4)
|
|
parser.add_argument('--lr_decay', type=bool, default=True)
|
|
parser.add_argument('--total_steps', type=int, default=int(1e7))
|
|
parser.add_argument('--num_envs', type=int, default=8)
|
|
parser.add_argument('--num_steps', type=int, default=128)
|
|
parser.add_argument('--update_epochs', type=int, default=8)
|
|
parser.add_argument('--num_mini_batches', type=int, default=4)
|
|
parser.add_argument('--gae_lambda', type=float, default=0.95)
|
|
parser.add_argument('--gamma', type=float, default=0.99)
|
|
parser.add_argument('--clip_value_loss', type=bool, default=True)
|
|
parser.add_argument('--c_1', type=float, default=1.0)
|
|
parser.add_argument('--c_2', type=float, default=0.01)
|
|
parser.add_argument('--clip_grad_norm', type=float, default=0.5)
|
|
parser.add_argument('--beta', type=float, default=1.0)
|
|
args = parser.parse_args()
|
|
args.device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu')
|
|
args.batch_size = int(args.num_envs * args.num_steps)
|
|
args.minibatch_size = int(args.batch_size // args.num_mini_batches)
|
|
args.num_updates = int(args.total_steps // args.batch_size)
|
|
return args
|
|
|
|
|
|
def make_env(env_id):
|
|
def thunk():
|
|
env = gym.make(env_id, frameskip=1, repeat_action_probability=0.0, full_action_space=False)
|
|
env = gym.wrappers.RecordEpisodeStatistics(env)
|
|
if 'FIRE' in env.unwrapped.get_action_meanings():
|
|
env = FireResetEnv(env)
|
|
env = EpisodicLifeEnv(env)
|
|
env = ClipRewardEnv(env)
|
|
env = gym.wrappers.AtariPreprocessing(env, scale_obs=True)
|
|
env = gym.wrappers.FrameStack(env, 4)
|
|
return env
|
|
return thunk
|
|
|
|
|
|
def compute_advantages(rewards, flags, values, last_value, args):
|
|
advantages = torch.zeros((args.num_steps, args.num_envs)).to(args.device)
|
|
adv = torch.zeros(args.num_envs).to(args.device)
|
|
for i in reversed(range(args.num_steps)):
|
|
returns = rewards[i] + args.gamma * flags[i] * last_value
|
|
delta = returns - values[i]
|
|
adv = delta + args.gamma * args.gae_lambda * flags[i] * adv
|
|
advantages[i] = adv
|
|
last_value = values[i]
|
|
return advantages
|
|
|
|
|
|
class Buffer:
|
|
def __init__(self, num_steps, num_envs, observation_shape, action_dim, device):
|
|
self.states = np.zeros((num_steps, num_envs, *observation_shape), dtype=np.float32)
|
|
self.actions = np.zeros((num_steps, num_envs), dtype=np.int64)
|
|
self.rewards = np.zeros((num_steps, num_envs), dtype=np.float32)
|
|
self.flags = np.zeros((num_steps, num_envs), dtype=np.float32)
|
|
self.log_probs = np.zeros((num_steps, num_envs), dtype=np.float32)
|
|
self.probs = np.zeros((num_steps, num_envs, action_dim), dtype=np.float32)
|
|
self.values = np.zeros((num_steps, num_envs), dtype=np.float32)
|
|
self.step = 0
|
|
self.num_steps = num_steps
|
|
self.device = device
|
|
|
|
def push(self, state, action, reward, flag, log_prob, prob, value):
|
|
self.states[self.step] = state
|
|
self.actions[self.step] = action
|
|
self.rewards[self.step] = reward
|
|
self.flags[self.step] = flag
|
|
self.log_probs[self.step] = log_prob
|
|
self.probs[self.step] = prob
|
|
self.values[self.step] = value
|
|
self.step = (self.step + 1) % self.num_steps
|
|
|
|
def get(self):
|
|
return (
|
|
torch.from_numpy(self.states).to(self.device),
|
|
torch.from_numpy(self.actions).to(self.device),
|
|
torch.from_numpy(self.rewards).to(self.device),
|
|
torch.from_numpy(self.flags).to(self.device),
|
|
torch.from_numpy(self.log_probs).to(self.device),
|
|
torch.from_numpy(self.values).to(self.device),
|
|
)
|
|
|
|
def get_probs(self):
|
|
return torch.from_numpy(self.probs).to(self.device)
|
|
|
|
|
|
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
|
torch.nn.init.orthogonal_(layer.weight, std)
|
|
torch.nn.init.constant_(layer.bias, bias_const)
|
|
return layer
|
|
|
|
|
|
class Agent(nn.Module):
|
|
def __init__(self, action_dim, device):
|
|
super().__init__()
|
|
self.encoder = nn.Sequential(
|
|
layer_init(nn.Conv2d(4, 32, 8, stride=4)),
|
|
nn.ReLU(),
|
|
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
|
|
nn.ReLU(),
|
|
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
|
|
nn.ReLU(),
|
|
nn.Flatten(),
|
|
layer_init(nn.Linear(64 * 7 * 7, 512)),
|
|
nn.ReLU()
|
|
)
|
|
self.actor_net = layer_init(nn.Linear(512, action_dim), std=0.01)
|
|
self.critic_net = layer_init(nn.Linear(512, 1), std=1)
|
|
|
|
if device.type == 'cuda':
|
|
self.cuda()
|
|
|
|
def forward(self, state):
|
|
hidden = self.encoder(state)
|
|
actor_value = self.actor_net(hidden)
|
|
distribution = Categorical(logits=actor_value)
|
|
action = distribution.sample()
|
|
log_prob = distribution.log_prob(action)
|
|
value = self.critic_net(hidden).squeeze(-1)
|
|
return action, log_prob, value, distribution.probs
|
|
|
|
def evaluate(self, states, actions):
|
|
hidden = self.encoder(states)
|
|
actor_values = self.actor_net(hidden)
|
|
distribution = Categorical(logits=actor_values)
|
|
log_probs = distribution.log_prob(actions)
|
|
entropy = distribution.entropy()
|
|
values = self.critic_net(hidden).squeeze(-1)
|
|
return log_probs, values, entropy, distribution.probs
|
|
|
|
def critic(self, state):
|
|
return self.critic_net(self.encoder(state)).squeeze(-1)
|
|
|
|
|
|
def train(env_id, seed):
|
|
args = get_args()
|
|
args.env_id = env_id
|
|
args.seed = seed
|
|
run_name = (
|
|
'ppo_penalty' +
|
|
'_epoch_' + str(args.update_epochs) +
|
|
'_seed_' + str(args.seed)
|
|
)
|
|
|
|
# 保存训练日志
|
|
path_string = str(args.env_id)[4:] + '/' + run_name
|
|
writer = SummaryWriter(path_string)
|
|
writer.add_text(
|
|
'Hyperparameter',
|
|
'|param|value|\n|-|-|\n%s' % ('\n'.join([f'|{key}|{value}|' for key, value in vars(args).items()])),
|
|
)
|
|
|
|
# 初始化并行环境
|
|
envs = gym.vector.AsyncVectorEnv([make_env(args.env_id) for _ in range(args.num_envs)])
|
|
|
|
# 状态空间和动作空间
|
|
observation_shape = envs.single_observation_space.shape
|
|
action_dim = envs.single_action_space.n
|
|
|
|
# 随机数种子
|
|
if args.seed:
|
|
numpy_rng = np.random.default_rng(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
state, _ = envs.reset(seed=args.seed)
|
|
else:
|
|
numpy_rng = np.random.default_rng()
|
|
state, _ = envs.reset()
|
|
|
|
# 价值网络和策略网络
|
|
agent = Agent(action_dim, args.device)
|
|
|
|
# 优化器
|
|
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate)
|
|
|
|
# 存储数据的buffer
|
|
rollout_buffer = Buffer(args.num_steps, args.num_envs, observation_shape, action_dim, args.device)
|
|
global_step = 0
|
|
start_time = time.time()
|
|
|
|
# 开始收集数据
|
|
for _ in tqdm(range(args.num_updates)):
|
|
|
|
# 学习率线性递减
|
|
if args.lr_decay:
|
|
optimizer.param_groups[0]['lr'] -= (args.learning_rate - 1e-12) / args.num_updates
|
|
|
|
for _ in range(args.num_steps):
|
|
global_step += 1 * args.num_envs
|
|
|
|
with torch.no_grad():
|
|
action, log_prob, value, prob = agent(torch.from_numpy(state).to(args.device).float())
|
|
|
|
action = action.cpu().numpy()
|
|
next_state, reward, terminated, truncated, all_info = envs.step(action)
|
|
|
|
# 存储数据
|
|
flag = 1.0 - np.logical_or(terminated, truncated)
|
|
log_prob = log_prob.cpu().numpy()
|
|
prob = prob.cpu().numpy()
|
|
value = value.cpu().numpy()
|
|
rollout_buffer.push(state, action, reward, flag, log_prob, prob, value)
|
|
state = next_state
|
|
|
|
if 'final_info' not in all_info:
|
|
continue
|
|
|
|
# 写入训练过程的数据
|
|
for info in all_info['final_info']:
|
|
if info is None:
|
|
continue
|
|
if 'episode' in info.keys():
|
|
writer.add_scalar('charts/episodic_return', info['episode']['r'], global_step)
|
|
# print(float(info['episode']['r']))
|
|
break
|
|
|
|
# ------------------------------- 上面收集了足够的数据,下面开始更新 ------------------------------- #
|
|
states, actions, rewards, flags, log_probs, values = rollout_buffer.get()
|
|
probs = rollout_buffer.get_probs()
|
|
|
|
with torch.no_grad():
|
|
last_value = agent.critic(torch.from_numpy(next_state).to(args.device).float())
|
|
|
|
# 计算优势值和TD目标
|
|
advantages = compute_advantages(rewards, flags, values, last_value, args)
|
|
td_target = advantages + values
|
|
|
|
# 将数据展平
|
|
states = states.reshape(-1, *observation_shape)
|
|
actions = actions.reshape(-1)
|
|
log_probs = log_probs.reshape(-1)
|
|
probs = probs.reshape((-1, action_dim))
|
|
td_target = td_target.reshape(-1)
|
|
advantages = advantages.reshape(-1)
|
|
values = values.reshape(-1)
|
|
batch_indexes = np.arange(args.batch_size)
|
|
|
|
# 更新策略网络和价值网络
|
|
for e in range(1, args.update_epochs + 1):
|
|
numpy_rng.shuffle(batch_indexes)
|
|
for start in range(0, args.batch_size, args.minibatch_size):
|
|
end = start + args.minibatch_size
|
|
index = batch_indexes[start:end]
|
|
|
|
# 得到最新的策略网络和价值网络输出
|
|
new_log_probs, td_predict, entropy, new_probs = agent.evaluate(states[index], actions[index])
|
|
log_ratio = new_log_probs - log_probs[index]
|
|
ratios = log_ratio.exp()
|
|
|
|
# 计算kl散度
|
|
d = torch.sum(
|
|
probs[index] * torch.log((probs[index] + 1e-12) / (new_probs + 1e-12)), 1
|
|
)
|
|
writer.add_scalar('charts/average_kld', d.mean(), global_step)
|
|
writer.add_scalar('others/min_kld', d.min(), global_step)
|
|
writer.add_scalar('others/max_kld', d.max(), global_step)
|
|
|
|
# 优势值标准化
|
|
b_advantages = advantages[index]
|
|
b_advantages = (b_advantages - b_advantages.mean()) / (b_advantages.std() + 1e-12)
|
|
|
|
# 策略网络损失
|
|
if d.mean() < 0.02 / 1.5:
|
|
args.beta = args.beta / 2
|
|
if d.mean() > 0.02 * 1.5:
|
|
args.beta = args.beta * 2
|
|
|
|
policy_loss = -(b_advantages * ratios - args.beta * d).mean()
|
|
|
|
# 价值网络损失
|
|
if args.clip_value_loss:
|
|
v_loss_un_clipped = (td_predict - td_target[index]) ** 2
|
|
v_clipped = td_target[index] + torch.clamp(
|
|
td_predict - td_target[index],
|
|
-0.2,
|
|
0.2,
|
|
)
|
|
v_loss_clipped = (v_clipped - td_target[index]) ** 2
|
|
v_loss_max = torch.max(v_loss_un_clipped, v_loss_clipped)
|
|
value_loss = 0.5 * v_loss_max.mean()
|
|
else:
|
|
value_loss = 0.5 * ((td_predict - td_target[index]) ** 2).mean()
|
|
|
|
entropy_loss = entropy.mean()
|
|
|
|
# 保存训练过程中的一些数据
|
|
writer.add_scalar('losses/value_loss', value_loss.item(), global_step)
|
|
writer.add_scalar('losses/policy_loss', policy_loss.item(), global_step)
|
|
writer.add_scalar('losses/entropy', entropy_loss.item(), global_step)
|
|
writer.add_scalar('losses/delta', torch.abs(ratios - 1).mean().item(), global_step)
|
|
|
|
# 总的损失
|
|
loss = policy_loss + value_loss * args.c_1 - entropy_loss * args.c_2
|
|
|
|
# 更新网络参数
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
clip_grad_norm_(agent.parameters(), args.clip_grad_norm)
|
|
optimizer.step()
|
|
|
|
explained_var = (
|
|
np.nan if torch.var(td_target) == 0 else 1 - torch.var(td_target - values) / torch.var(td_target)
|
|
)
|
|
writer.add_scalar('charts/learning_rate', optimizer.param_groups[0]['lr'], global_step)
|
|
writer.add_scalar('charts/SPS', int(global_step / (time.time() - start_time)), global_step)
|
|
writer.add_scalar('others/explained_var', explained_var, global_step)
|
|
|
|
envs.close()
|
|
writer.close()
|
|
|
|
|
|
def main():
|
|
for env_id in ['Breakout']:
|
|
for seed in [1, 2, 3]:
|
|
print(env_id, seed)
|
|
train('ALE/' + env_id + '-v5', seed)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|