2023-02-03 20:57:27 +01:00
|
|
|
from typing import Any, Callable, List, Optional
|
2021-09-03 05:05:04 +08:00
|
|
|
|
2023-02-03 20:57:27 +01:00
|
|
|
import gymnasium as gym
|
2020-08-19 15:00:24 +08:00
|
|
|
import numpy as np
|
|
|
|
|
2023-02-03 20:57:27 +01:00
|
|
|
from tianshou.env.utils import gym_new_venv_step_type
|
2020-08-19 15:00:24 +08:00
|
|
|
from tianshou.env.worker import EnvWorker
|
|
|
|
|
|
|
|
try:
|
|
|
|
import ray
|
|
|
|
except ImportError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2021-11-02 17:08:00 +01:00
|
|
|
class _SetAttrWrapper(gym.Wrapper):
|
|
|
|
|
|
|
|
def set_env_attr(self, key: str, value: Any) -> None:
|
2022-07-14 22:52:56 -07:00
|
|
|
setattr(self.env.unwrapped, key, value)
|
2021-11-02 17:08:00 +01:00
|
|
|
|
|
|
|
def get_env_attr(self, key: str) -> Any:
|
|
|
|
return getattr(self.env, key)
|
|
|
|
|
|
|
|
|
2020-08-19 15:00:24 +08:00
|
|
|
class RayEnvWorker(EnvWorker):
|
|
|
|
"""Ray worker used in RayVectorEnv."""
|
|
|
|
|
|
|
|
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
|
2022-03-12 05:33:54 -08:00
|
|
|
self.env = ray.remote(_SetAttrWrapper).options( # type: ignore
|
|
|
|
num_cpus=0
|
|
|
|
).remote(env_fn())
|
2021-03-02 12:28:28 +08:00
|
|
|
super().__init__(env_fn)
|
2020-08-19 15:00:24 +08:00
|
|
|
|
2021-11-02 17:08:00 +01:00
|
|
|
def get_env_attr(self, key: str) -> Any:
|
|
|
|
return ray.get(self.env.get_env_attr.remote(key))
|
|
|
|
|
|
|
|
def set_env_attr(self, key: str, value: Any) -> None:
|
|
|
|
ray.get(self.env.set_env_attr.remote(key, value))
|
2020-08-19 15:00:24 +08:00
|
|
|
|
2022-06-27 18:52:21 -04:00
|
|
|
def reset(self, **kwargs: Any) -> Any:
|
|
|
|
if "seed" in kwargs:
|
|
|
|
super().seed(kwargs["seed"])
|
|
|
|
return ray.get(self.env.reset.remote(**kwargs))
|
2020-08-19 15:00:24 +08:00
|
|
|
|
|
|
|
@staticmethod
|
2020-09-13 19:31:50 +08:00
|
|
|
def wait( # type: ignore
|
2021-03-30 16:06:03 +08:00
|
|
|
workers: List["RayEnvWorker"], wait_num: int, timeout: Optional[float] = None
|
2020-09-12 15:39:01 +08:00
|
|
|
) -> List["RayEnvWorker"]:
|
2020-08-19 15:00:24 +08:00
|
|
|
results = [x.result for x in workers]
|
2021-03-02 12:28:28 +08:00
|
|
|
ready_results, _ = ray.wait(results, num_returns=wait_num, timeout=timeout)
|
2020-08-19 15:00:24 +08:00
|
|
|
return [workers[results.index(result)] for result in ready_results]
|
|
|
|
|
2022-06-27 18:52:21 -04:00
|
|
|
def send(self, action: Optional[np.ndarray], **kwargs: Any) -> None:
|
|
|
|
# self.result is actually a handle
|
2022-02-08 00:40:01 +08:00
|
|
|
if action is None:
|
2022-06-27 18:52:21 -04:00
|
|
|
self.result = self.env.reset.remote(**kwargs)
|
2022-02-08 00:40:01 +08:00
|
|
|
else:
|
|
|
|
self.result = self.env.step.remote(action)
|
|
|
|
|
2023-02-03 20:57:27 +01:00
|
|
|
def recv(self) -> gym_new_venv_step_type:
|
2022-03-12 05:33:54 -08:00
|
|
|
return ray.get(self.result) # type: ignore
|
2020-08-19 15:00:24 +08:00
|
|
|
|
2022-06-27 18:52:21 -04:00
|
|
|
def seed(self, seed: Optional[int] = None) -> Optional[List[int]]:
|
2021-03-02 12:28:28 +08:00
|
|
|
super().seed(seed)
|
2022-06-27 18:52:21 -04:00
|
|
|
try:
|
|
|
|
return ray.get(self.env.seed.remote(seed))
|
2022-09-26 18:31:23 +02:00
|
|
|
except (AttributeError, NotImplementedError):
|
2022-06-27 18:52:21 -04:00
|
|
|
self.env.reset.remote(seed=seed)
|
|
|
|
return None
|
2020-08-19 15:00:24 +08:00
|
|
|
|
2020-09-12 15:39:01 +08:00
|
|
|
def render(self, **kwargs: Any) -> Any:
|
2021-03-02 12:28:28 +08:00
|
|
|
return ray.get(self.env.render.remote(**kwargs))
|
2020-08-19 15:00:24 +08:00
|
|
|
|
|
|
|
def close_env(self) -> None:
|
|
|
|
ray.get(self.env.close.remote())
|