50 lines
1.5 KiB
Python
Raw Normal View History

import gym
import numpy as np
from typing import Any, List, Callable, Tuple, Optional
from tianshou.env.worker import EnvWorker
try:
import ray
except ImportError:
pass
class RayEnvWorker(EnvWorker):
"""Ray worker used in RayVectorEnv."""
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
self.env = ray.remote(gym.Wrapper).options(num_cpus=0).remote(env_fn())
super().__init__(env_fn)
def __getattr__(self, key: str) -> Any:
return ray.get(self.env.__getattr__.remote(key))
def reset(self) -> Any:
return ray.get(self.env.reset.remote())
@staticmethod
def wait( # type: ignore
workers: List["RayEnvWorker"], wait_num: int, timeout: Optional[float] = None
) -> List["RayEnvWorker"]:
results = [x.result for x in workers]
ready_results, _ = ray.wait(results, num_returns=wait_num, timeout=timeout)
return [workers[results.index(result)] for result in ready_results]
def send_action(self, action: np.ndarray) -> None:
# self.action is actually a handle
self.result = self.env.step.remote(action)
def get_result(self) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
return ray.get(self.result)
def seed(self, seed: Optional[int] = None) -> List[int]:
super().seed(seed)
return ray.get(self.env.seed.remote(seed))
def render(self, **kwargs: Any) -> Any:
return ray.get(self.env.render.remote(**kwargs))
def close_env(self) -> None:
ray.get(self.env.close.remote())