Tianshou/examples/mujoco/mujoco_sac.py

145 lines
6.1 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
2020-05-12 11:31:47 +08:00
import os
import gym
import torch
import datetime
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import SACPolicy
from tianshou.utils import BasicLogger
from tianshou.env import SubprocVectorEnv
from tianshou.utils.net.common import Net
from tianshou.trainer import offpolicy_trainer
from tianshou.utils.net.continuous import ActorProb, Critic
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
def get_args():
parser = argparse.ArgumentParser()
2020-11-09 16:43:55 +08:00
parser.add_argument('--task', type=str, default='Ant-v3')
parser.add_argument('--seed', type=int, default=0)
2020-11-09 16:43:55 +08:00
parser.add_argument('--buffer-size', type=int, default=1000000)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[256, 256])
parser.add_argument('--actor-lr', type=float, default=1e-3)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.2)
2020-11-09 16:43:55 +08:00
parser.add_argument('--auto-alpha', default=False, action='store_true')
parser.add_argument('--alpha-lr', type=float, default=3e-4)
parser.add_argument("--start-timesteps", type=int, default=10000)
parser.add_argument('--epoch', type=int, default=200)
parser.add_argument('--step-per-epoch', type=int, default=5000)
parser.add_argument('--step-per-collect', type=int, default=1)
parser.add_argument('--update-per-step', type=int, default=1)
parser.add_argument('--n-step', type=int, default=1)
2020-11-09 16:43:55 +08:00
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--training-num', type=int, default=1)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
2020-11-09 16:43:55 +08:00
parser.add_argument('--resume-path', type=str, default=None)
return parser.parse_args()
def test_sac(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
2020-11-09 16:43:55 +08:00
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low),
np.max(env.action_space.high))
# train_envs = gym.make(args.task)
if args.training_num > 1:
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
else:
train_envs = gym.make(args.task)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = ActorProb(
net_a, args.action_shape, max_action=args.max_action,
device=args.device, unbounded=True, conditioned_sigma=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True, device=args.device)
net_c2 = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True, device=args.device)
critic1 = Critic(net_c1, device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
2020-11-09 16:43:55 +08:00
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
tau=args.tau, gamma=args.gamma, alpha=args.alpha,
estimation_step=args.n_step, action_space=env.action_space)
2020-11-09 16:43:55 +08:00
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(
args.resume_path, map_location=args.device
))
print("Loaded agent from: ", args.resume_path)
# collector
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
train_collector.collect(n_step=args.start_timesteps, random=True)
# log
log_path = os.path.join(args.logdir, args.task, 'sac', 'seed_' + str(args.seed) +
'_' + datetime.datetime.now().strftime('%m%d_%H%M%S') +
'-' + args.task.replace('-', '_') + '_sac')
2020-05-12 11:31:47 +08:00
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = BasicLogger(writer)
2020-11-09 16:43:55 +08:00
2020-05-12 11:31:47 +08:00
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.step_per_collect, args.test_num,
args.batch_size, save_fn=save_fn, logger=logger,
update_per_step=args.update_per_step, test_in_train=False)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
if __name__ == '__main__':
test_sac()