75 lines
2.9 KiB
Python
Raw Normal View History

2020-03-20 19:52:29 +08:00
import time
2020-03-27 09:04:29 +08:00
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from typing import Dict, List, Union, Callable, Optional
2020-03-20 19:52:29 +08:00
2020-05-12 11:31:47 +08:00
from tianshou.data import Collector
from tianshou.policy import BasePolicy
2020-03-20 19:52:29 +08:00
2020-05-12 11:31:47 +08:00
def test_episode(
policy: BasePolicy,
collector: Collector,
test_fn: Optional[Callable[[int], None]],
2020-05-12 11:31:47 +08:00
epoch: int,
n_episode: Union[int, List[int]],
writer: SummaryWriter = None,
global_step: int = None) -> Dict[str, float]:
2020-04-04 21:02:06 +08:00
"""A simple wrapper of testing policy in collector."""
2020-03-20 19:52:29 +08:00
collector.reset_env()
collector.reset_buffer()
policy.eval()
if test_fn:
test_fn(epoch)
2020-03-27 09:04:29 +08:00
if collector.get_env_num() > 1 and np.isscalar(n_episode):
n = collector.get_env_num()
n_ = np.zeros(n) + n_episode // n
n_[:n_episode % n] += 1
n_episode = list(n_)
result = collector.collect(n_episode=n_episode)
if writer is not None and global_step is not None:
for k in result.keys():
writer.add_scalar('test/' + k, result[k], global_step=global_step)
return result
2020-03-20 19:52:29 +08:00
2020-05-12 11:31:47 +08:00
def gather_info(start_time: float,
train_c: Collector,
test_c: Collector,
best_reward: float
) -> Dict[str, Union[float, str]]:
"""A simple wrapper of gathering information from collectors.
2020-04-03 21:28:12 +08:00
:return: A dictionary with the following keys:
2020-04-03 21:28:12 +08:00
* ``train_step`` the total collected step of training collector;
* ``train_episode`` the total collected episode of training collector;
* ``train_time/collector`` the time for collecting frames in the \
2020-04-03 21:28:12 +08:00
training collector;
* ``train_time/model`` the time for training models;
* ``train_speed`` the speed of training (frames per second);
* ``test_step`` the total collected step of test collector;
* ``test_episode`` the total collected episode of test collector;
* ``test_time`` the time for testing;
* ``test_speed`` the speed of testing (frames per second);
* ``best_reward`` the best reward over the test results;
* ``duration`` the total elapsed time.
2020-04-03 21:28:12 +08:00
"""
2020-03-20 19:52:29 +08:00
duration = time.time() - start_time
model_time = duration - train_c.collect_time - test_c.collect_time
train_speed = train_c.collect_step / (duration - test_c.collect_time)
test_speed = test_c.collect_step / test_c.collect_time
return {
'train_step': train_c.collect_step,
'train_episode': train_c.collect_episode,
'train_time/collector': f'{train_c.collect_time:.2f}s',
'train_time/model': f'{model_time:.2f}s',
'train_speed': f'{train_speed:.2f} step/s',
'test_step': test_c.collect_step,
'test_episode': test_c.collect_episode,
'test_time': f'{test_c.collect_time:.2f}s',
'test_speed': f'{test_speed:.2f} step/s',
'best_reward': best_reward,
'duration': f'{duration:.2f}s',
}